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Last time, we talked about:

 The properties of Convolutional codes.

 We introduced interleaving as a means 
to combat bursty errors by making the 
channel seem uncorrelated. 

 We also studied “Concatenated codes” 
that simply consist of  inner and outer 
codes. They can provide the required 
performance at a lower complexity.
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Today, we are going to talk about:

 Shannon limit

 Comparison of different modulation 
schemes

 Trade-off between modulation and 
coding
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Goals in designing a DCS

 Goals:

 Maximizing the transmission bit rate

 Minimizing probability of bit error

 Minimizing the required power 

 Minimizing required system bandwidth

 Maximizing system utilization

 Minimize system complexity
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Error probability plane
(example for coherent MPSK and MFSK)
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Limitations in designing a DCS

 Limitations:

 The Nyquist theoretical minimum bandwidth 
requirement

 The Shannon-Hartley capacity theorem (and 
the Shannon limit)

 Government regulations

 Technological limitations

 Other system requirements (e.g satellite 
orbits)
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Nyquist minimum bandwidth requirement

 The theoretical minimum bandwidth 
needed for baseband transmission of R

s

symbols per second is R
s
/2 hertz.
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Shannon limit

 Channel capacity: The maximum data rate at 

which error-free communication over the channel is 
performed.

 Channel capacity of AWGV channel (Shannon-

Hartley capacity theorem):
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Shannon limit …

 The Shannon theorem puts a limit on the 
transmission data rate, not on the error 
probability:
 Theoretically possible to transmit 

information at any rate          , with an 
arbitrary small error probability by using a 
sufficiently complicated coding scheme 

 For an information rate           , it is not 
possible to find a code that can achieve an 
arbitrary small error probability.
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Shannon limit …
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Shannon limit …

 There exists a limiting value of           below which there can 
be no error-free communication at any information rate.

 By increasing the bandwidth alone, the capacity can not be 
increased to any desired value.
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Shannon limit …
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Bandwidth efficiency plane
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Power and bandwidth limited systems

 Two major communication resources:

 Transmit power and channel bandwidth

 In many communication systems, one of 
these resources is more precious than the 
other. Hence, systems can be classified as:

 Power-limited systems:

 save power at the expense of bandwidth (for example by 
using coding schemes)

 Bandwidth-limited systems:

 save bandwidth at the expense of power (for example by 
using spectrally efficient modulation schemes) 
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M-ary signaling

 Bandwidth efficiency:

 Assuming Nyquist (ideal rectangular) filtering at baseband, 
the required passband bandwidth is:

 M-PSK and M-QAM (bandwidth-limited systems)

 Bandwidth efficiency increases as M increases.

 MFSK (power-limited systems)

 Bandwidth efficiency decreases as M increases.
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Design example of uncoded systems

 Design goals:
1. The bit error probability at the modulator output must meet the 

system error requirement.

2. The transmission bandwidth must not exceed the available 
channel bandwidth.
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Design example of uncoded systems …

 Choose a modulation scheme that meets the following 
system requirements:
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 Choose a modulation scheme that meets the following 
system requirements:
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Design example of coded systems

 Design goals:
1. The bit error probability at the decoder output must meet the 

system error requirement.

2. The rate of the code must not expand the required transmission 
bandwidth beyond the available channel bandwidth.

3. The code should be as simple as possible. Generally, the shorter 
the code, the simpler will be its implementation.
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Design example of coded systems … 

 Choose a modulation/coding scheme that meets the following 
system requirements:

 The requirements are similar to the bandwidth-limited uncoded 
system, except that the target bit error probability is much lower.
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Design example of coded systems

 Using 8-PSK, satisfies the bandwidth constraint, but 
not the bit error probability constraint. Much higher 
power is required for uncoded 8-PSK.

 The solution is to use channel coding (block codes or 
convolutional codes) to save the power at the expense 
of bandwidth while meeting the target bit error 
probability.
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Design example of coded systems

 For simplicity, we use BCH codes.

 The required coding gain is:

 The maximum allowed bandwidth expansion due to coding is:

 The current bandwidth of uncoded 8-PSK can be expanded by 
still 25% to remain below the channel bandwidth. 

 Among the BCH codes, we choose the one which provides the 
required coding gain and bandwidth expansion with minimum 
amount of redundancy.
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Design example of coded systems …

 Bandwidth compatible BCH codes
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Design example of coded systems …

 Examine that the combination of 8-PSK and (63,51) 
BCH codes meets the requirements:
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Effects of error-correcting codes on error 
performance

 Error-correcting codes at fixed SNR influence 
the error performance in two ways:

1. Improving effect:

 The larger the redundancy, the greater the error-
correction capability

2. Degrading effect:

 Energy reduction per channel symbol or coded bits for 
real-time applications due to faster signaling.

 The degrading effect vanishes for non-real time 
applications when delay is tolerable, since the 
channel symbol energy is not reduced.
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Bandwidth efficient modulation schemes

 Offset QPSK (OQPSK) and Minimum shift keying

 Bandwidth efficient and constant envelope 
modulations, suitable for non-linear amplifier

 M-QAM

 Bandwidth efficient modulation

 Trellis coded modulation (TCM)

 Bandwidth efficient modulation which improves the 
performance without bandwidth expansion
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Course summary

 In a big picture, we studied:

 Fundamentals issues in designing a digital 
communication system (DSC)

 Basic techniques: formatting, coding, modulation

 Design goals:

 Probability of error and delay constraints

 Trade-off between parameters:

 Bandwidth and power limited systems

 Trading power with bandwidth and vise versa 
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Block diagram of a DCS
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Course summary – cont’d

 In details, we studies:

1. Basic definitions and concepts

 Signals classification and linear systems

 Random processes and their statistics

 WSS, cyclostationary and ergodic processes

 Autocorrelation and power spectral density

 Power and energy spectral density

 Noise in communication systems (AWGN)

 Bandwidth of signal

2. Formatting

 Continuous sources
 Nyquist sampling theorem and aliasing

 Uniform and non-uniform quantization
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Course summary – cont’d

1. Channel coding

 Linear block codes (cyclic codes and Hamming 
codes)

 Encoding and decoding structure

 Generator and parity-check matrices (or 
polynomials), syndrome, standard array 

 Codes properties:

 Linear property of the code, Hamming distance, 
minimum distance, error-correction capability, 
coding gain, bandwidth expansion due to 
redundant bits, systematic codes



Lecture 9a 31

Course summary – cont’d

 Convolutional codes

 Encoder and decoder structure

 Encoder as a finite state machine, state diagram, 
trellis, transfer function

 Minimum free distance, catastrophic codes, systematic 
codes

 Maximum likelihood decoding:

 Viterbi decoding algorithm with soft and hard 
decisions

 Coding gain, Hamming distance, Euclidean distance, 
affects of free distance, code rate and encoder 
memory on the performance (probability of error and 
bandwidth)
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Course summary – cont’d

1. Modulation

 Baseband modulation

 Signal space, Euclidean distance

 Orthogonal basic function

 Matched filter to reduce ISI

 Equalization to reduce channel induced ISI 

 Pulse shaping to reduce ISI due to filtering at the 
transmitter and receiver

 Minimum Nyquist bandwidth, ideal Nyquist pulse 
shapes, raise cosine pulse shape
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Course summary – cont’d

 Baseband detection

 Structure of optimum receiver

 Optimum receiver structure

 Optimum detection (MAP)

 Maximum likelihood detection for equally likely symbols

 Average bit error probability

 Union bound on error probability

 Upper bound on error probability based on minimum 
distance
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Course summary – cont’d

 Passband modulation

 Modulation schemes

 One dimensional waveforms (ASK, M-PAM)

 Two dimensional waveforms (M-PSK, M-QAM)

 Multidimensional waveforms (M-FSK)

 Coherent and non-coherent detection

 Average symbol and bit error probabilities

 Average symbol energy, symbol rate, bandwidth

 Comparison of modulation schemes in terms of error 
performance and bandwidth occupation (power and 
bandwidth)
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Course summary – cont’d

1. Trade-off between modulation and coding
 Channel models 

 Discrete inputs, discrete outputs

 Memoryless channels : BSC 

 Channels with memory

 Discrete input, continuous output

 AWGN channels

 Shannon limits for information transmission rate

 Comparison between different modulation and coding 
schemes

 Probability of error, required bandwidth, delay

 Trade-offs between power and bandwidth

 Uncoded and coded systems


