EE-387 Probability for Electrical and Computer Engineers
 Assignment 2 (due on Thursday, July 21, 2005 before lecture)

Problem 1: (Problem 2.2.3 from Yates and Goodman) The random variable V has PMF

$$
P_{V}(v)= \begin{cases}c v^{2} & v=1,2,3,4 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the value of the constant c.
(b) Find $P\left[V \in\left\{u^{2} \mid u=1,2,3, \ldots\right\}\right]$.
(c) Find the probability that V is an even number.
(d) Find $P[V>2]$.

Problem 2: (Problem 2.3.11 from Yates and Goodman) In a packet voice communications system, a source transmits packets containing digitized speech to a receiver. Because transmission errors occasionally occur, an acknowledgment (ACK) or a nonacknolwedgement (NAK) is transmitted back to the source to indicate the status of each received packet. When the transmitter gets a NAK, the packet is retransmitted. Voice packets are delay sensitive and a packet can be transmitted a maximum d times. If a packet transmission is an independent Bernoulli trial with success probability p, what is the PMF of T, the number of times a packet is transmitted?

Problem 3: (Problem 2.4.2 from Yates and Goodman) The random variable X has CDF

$$
F_{X}(x)= \begin{cases}0 & x<-1 \\ 0.2 & -1 \leq x<0 \\ 0.7 & 0 \leq x<1 \\ 1 & x \geq 1\end{cases}
$$

(a) Draw a graph of the CDF.
(b) Write $P_{X}(x)$, the PMF of X. Be sure to write the value of $P_{X}(x)$ for all x from $-\infty$ and ∞.

Problem 4: (Problem 2.5.10 from Yates and Goodman) Let binomial random variable X_{n} denote the number of successes in n Bernoulli trials with success probability p. Prove that $E\left[X_{n}\right]=n p$.

Hint: Use the fact that $\sum_{x=0}^{n-1} P_{X_{n-1}}(x)=1$.

Problem 5: (Problem 2.6.2 from Yates and Goodman) Given the random variable X is Problem 3, let $V=g(X)=|X|$. (a) Find $P_{V}(v)$. (b) Find $F_{V}(v)$. (c) Find $E[V]$.

Problem 6: (Problem 2.6.5 from Yates and Goodman) A source wishes to transmit data packets to a receiver over a radio link. The receiver uses error detection to identify packets that have been corrupted by radio noise. When a packet is received error-free, the receiver sends an acknowledgment (ACK) back to the source. When the receiver gets a packet with errors, a negative acknowledgment (NAK) message is sent back to the source. Each time the source receives a NAK, the packet is retransmitted. We assume that each packet transmission is independently corrupted by errors with probability q.
(a) Find the PMF of X, the number of times that a packet is transmitted by the source.
(b) Suppose each packet takes 1 millisecond to transmit and that the source waits an additional millisecond to receive the acknowledgment message (ACK or NAK) before retransmitting. Let T equal the time required until the packet is successfully received. What is the relationship between T and X ? What is the PMF of T ?

Problem 7: (Problem 2.8.5 from Yates and Goodman) Let X have the binomial PMF

$$
P_{X}(x)=\binom{4}{x}(1 / 2)^{4}
$$

(a) Find the standard deviation of the random variable X. (b) What is $P\left[\mu_{X}-\sigma_{X} \leq X \leq \mu_{X}+\sigma_{X}\right]$, the probability that X is within one standard deviation of the expected value?

Problem 8: (Problem 2.8.5 from Yates and Goodman) In packet data transmission, the time between successfully received packets is called the interarrival time, and randomness in packet interarrival times is called jitter. In real-time packet data communications, jitter is undesirable. One measure of jitter is the standard deviation of the packet arrival time. From Problem 6, calculate
the jitter σ_{T}. How large can q be such that the jitter is less than 2 milliseconds?

Problem 9: (Problem 2.8.10 from Yates and Goodman) Let random variable X have PMF $P_{X}(x)$. We wish to guess the value of X before performing the actual experiment. If we call our guess \hat{x}, the expected square of the error in our guess is

$$
e(\hat{x})=E\left[(X-\hat{x})^{2}\right] .
$$

Show that $e(\hat{x})$ is minimized by $\hat{x}=E[X]$.

Problem 10: (Problem 2.9.2 from Yates and Goodman) In Problem 3, find $P_{X \mid B}(x)$, where the condition $B=\{|X|>0\}$. What are $E[X \mid B]$ and $\operatorname{Var}[X \mid B]$?

