EE-387 Probability for Electrical and Computer Engineers
 Assignment 3 (due on Thursday, July 28, 2005 before lecture)

Problem 1: (Problem 3.2.1 from Yates and Goodman) The random variable X has PDF

$$
f_{X}(x)= \begin{cases}c x & 0 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Use the PDF to find (a) the constant c. (b) $P[0 \leq X \leq 1]$. (c) $P[-1 / 2 \leq X \leq 1 / 2]$. (d) the CDF $F_{X}(x)$.

Problem 2: (Problem 3.3.5 from Yates and Goodman) The CDF of a random variable Y is

$$
F_{Y}(y)= \begin{cases}0 & y<-1 \\ (y+1) / 2 & -1 \leq y \leq 1 \\ 1 & y>1\end{cases}
$$

(a) What is $E[Y]$? (b) What is $\operatorname{Var}[\mathrm{Y}]$?

Problem 3: In mobile communications, Rayleigh distribution is often used to model the random fading amplitude. The CDF of a Rayleigh random variable is given by

$$
F_{X}(x)= \begin{cases}1-e^{-x^{2} / 2 \sigma^{2}} & x \geq 0 \\ 0 & x<0\end{cases}
$$

(a) Find the PDF of $\mathrm{X}, f_{X}(x)$. (b) Find $E[X]$, the mean and $\operatorname{Var}[X]$, the variance.

Problem 4: The average received radio signal power over a large distance fluctuates randomly and this phenomenon is called shadowing. The lognormal PDF is commonly used to model the statistic of shadowing. The PDF of a lognormal-distributed random variable X is given by

$$
f_{X}(x)= \begin{cases}\left.\frac{\exp \left\{-\left[\ln (x-b)-a_{X}\right]^{2} / 2 \sigma_{X}^{2}\right.}{\sqrt{2 \pi} \sigma_{X}(x-b)}\right\} & x \geq b \\ 0 & x<b\end{cases}
$$

where $\sigma_{X}>0,-\infty<a_{X}<\infty$, and $-\infty<b<\infty$. Show that the corresponding CDF is

$$
F_{X}(x)= \begin{cases}\Phi\left[\frac{\ln (x-b)-a_{X}}{\sigma_{X}}\right] & x \geq b \\ 0 & x<b\end{cases}
$$

where the function $\Phi(x)$ is defined as

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-u^{2} / 2} d u
$$

Problem 5: The Cauchy random variable has the probability density function

$$
f_{X}(x)=\frac{b / \pi}{b^{2}+(x-a)^{2}}
$$

for real numbers $b>0$ and $-\infty<a<\infty$. (a) Show that the CDF of X is

$$
F_{X}(x)=\frac{1}{2}+\frac{1}{\pi} \tan ^{-1}\left(\frac{x-a}{b}\right)
$$

(b) Determine mean of the Cauchy random variable. (c) What can you say about the variance of the Cauchy random variable?

Problem 6: (Problem 3.5.1 from Yates and Goodman) The peak temperature T, as measured in degrees Fahrenheit, on a July day in New Jersey is the Gaussian $(85,10)$ random variable. What is $P[T>100], P[T<60]$, and $P[70 \leq T \leq 100]$?

Problem 7: (Problem 3.7.4 from Yates and Goodman) Random variable X has CDF

$$
F_{X}(x)= \begin{cases}0 & x<-1 \\ x / 3+1 / 3 & -1 \leq x<0 \\ x / 3+2 / 3 & 0 \leq x<1 \\ 1 & 1 \leq x\end{cases}
$$

If $Y=g(X)$ where

$$
g(X)= \begin{cases}0 & X<0 \\ 100 & X \geq 0\end{cases}
$$

(a) What is $F_{Y}(y)$? (b) What is $f_{Y}(y)$? (c) What is $E[Y]$?

Problem 8: (Problem 3.7.11 from Yates and Goodman) The input voltage to a rectifier is a random variable U with uniform distribution on $[-1,1]$. The rectifier output is a random variable W defined by

$$
W=g(U)= \begin{cases}0 & U<0 \\ U & U \geq 0\end{cases}
$$

Find the CDF $F_{W}(w)$ and the expected value $E[W]$.

Problem 9: (Problem 3.8.5 from Yates and Goodman) The time between telephone calls at a telephone switch is an exponential random variable T with expected value 0.01 . Given $T>0.02$,
(a) What is $E[T \mid T>0.02]$, the conditional expected value of T ?
(b) What is $\operatorname{Var}[T \mid T>0.02]$, the conditional variance of T ?

Problem 10: For the quantizer example given in the lecture, the difference $Z=X-Y$ is the quantization error or quantization "noise." As in the quantizer example, we assume that X has a uniform ($-r / 2, r / 2$) PDF.
(a) Given event B_{i} that $Y=y_{i}=\Delta / 2+i \Delta$ and X is in the i th quantization interval, find the conditional PDF of Z.
(b) Show that Z is a uniform random variable. Find the PDF, the expected value, and the variance of Z.

