EE-387 Probability for Electrical and Computer Engineers Assignment 4 (due on Thursday, August 4, 2005 before lecture)

Problem 1: (Problem 3.8.5 from Yates and Goodman) The time between telephone calls at a telephone switch is an exponential random variable *T* with expected value 0.01. Given T > 0.02,

(a) What is E[T|T > 0.02], the conditional expected value of T?

(b) What is Var[T|T > 0.02], the conditional variance of T?

Problem 2: (Problem 4.2.2 from Yates and Goodman) Random variables *X* and *Y* have the joint PMF

$$P_{X,Y}(x,y) = \begin{cases} c|x+y| & x = -2, 0, 2\\ & y = -1, 0, 1\\ 0 & \text{otherwise.} \end{cases}$$

(a) What is the value of the constant c? (b) What is P[Y < X]? (c) What is P[Y > X]? (d) What is P[Y = X]? (e) What is P[X < 1]?

Problem 3: (Problem 4.3.2 from Yates and Goodman) Given the random variables *X* and *Y* in Problem 2, find (a) The marginal PMFs $P_X(x)$ and $P_Y(y)$, (b) The expected values E[X] and E[Y], (c) The standard deviations σ_X and σ_Y .

Problem 4: (Problem 4.4.1 from Yates and Goodman) Random variables *X* and *Y* have the joint PDF

$$f_{X,Y}(x,y) = \begin{cases} c & x+y \le 1, x \ge 0, y \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$

(a) What is the value of the constant c? (b) What is $P[X \le Y]$? (c) What is $P[X + Y \le 1/2]$?

Problem 5: (Problem 4.4.3 from Yates and Goodman) Random variables X and Y have joint

PDF

$$f_{X,Y}(x,y) = \begin{cases} 6e^{-(2x+3y)} & x \ge 0, y \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$

(a) Find P[X > Y] and $P[X + Y \le 1]$. (b) Find $P[\min(X, Y) \ge 1]$. (c) Find $P[\max(X, Y) \le 1]$.

Problem 6: (Problem 4.5.5 from Yates and Goodman) Over the circle $X^2 + Y^2 \le r^2$, random variable *X* and *Y* have the PDF

$$f_{X,Y}(x,y) = \begin{cases} 2|xy|/r^4 & x^2 + y^2 \le r^2, \\ 0 & \text{otherwise.} \end{cases}$$

(a) What is the marginal PDF $f_X(x)$? (b) What is the marginal PDF $f_Y(y)$?

Problem 7: (Problem 4.5.6 from Yates and Goodman) Random variable *X* and *Y* have the joint PDF

$$f_{X,Y}(x,y) = \begin{cases} cy & 0 \le y \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

(a) Draw the region of nonzero probability. (b) What is the value of the constant c? (c) What is $F_X(x)$? (d) What is $F_Y(y)$? (e) What is $P[Y \le X/2]$?

Problem 8: (Problem 4.6.2 from Yates and Goodman) Given random variables X and Y in Problem 2 and the function W = X + 2Y, find (a) The probability mass function $P_W(w)$, (b) The expected value E[W], (c) P[W > 0].

Problem 9: (Problem 4.6.6 from Yates and Goodman) Random variables *X* and *Y* have joint PDF

$$f_{X,Y}(x,y) = \begin{cases} x+y & 0 \le x \le 1, 0 \le y \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Let $W = \max(X, Y)$. (a) What is S_W , the range of W? (b) Find $F_W(w)$ and $f_W(w)$.

Problem 10: (Problem 4.6.8 from Yates and Goodman) Random variables X and Y have joint

PDF

$$f_{X,Y}(x,y) = \begin{cases} 2 & 0 \le y \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Let W = Y/X. (a) What is S_W , the range of W? (b) Find $F_W(w)$, $f_W(w)$, and E[W].

Problem 11: (Problem 4.7.10 from Yates and Goodman) Random variables *X* and *Y* have joint PDF

$$f_{X,Y}(x,y) = \begin{cases} 5x^2/2 & -1 \le x \le 1; \\ & 0 \le y \le x^2, \\ 0 & \text{otherwise.} \end{cases}$$

(a) What are E[X] and Var[X]? (b) What are E[Y] and Var[Y]? (c) What is Cov[X,Y]? (d) What is E[X+Y]? (e) What is Var[X+Y]?