EE-387 Probability for Electrical and Computer Engineers
 Assignment 4 (due on Thursday, August 4, 2005 before lecture)

Problem 1: (Problem 3.8.5 from Yates and Goodman) The time between telephone calls at a telephone switch is an exponential random variable T with expected value 0.01 . Given $T>0.02$,
(a) What is $E[T \mid T>0.02]$, the conditional expected value of T ?
(b) What is $\operatorname{Var}[T \mid T>0.02]$, the conditional variance of T ?

Problem 2: (Problem 4.2.2 from Yates and Goodman) Random variables X and Y have the joint PMF

$$
P_{X, Y}(x, y)= \begin{cases}c|x+y| & x=-2,0,2 \\ & y=-1,0,1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) What is the value of the constant c ? (b) What is $P[Y<X]$? (c) What is $P[Y>X]$? (d) What is $P[Y=X]$? (e) What is $P[X<1]$?

Problem 3: (Problem 4.3.2 from Yates and Goodman) Given the random variables X and Y in Problem 2, find (a) The marginal PMFs $P_{X}(x)$ and $P_{Y}(y)$, (b) The expected values $E[X]$ and $E[Y]$, (c) The standard deviations σ_{X} and σ_{Y}.

Problem 4: (Problem 4.4.1 from Yates and Goodman) Random variables X and Y have the joint PDF

$$
f_{X, Y}(x, y)= \begin{cases}c & x+y \leq 1, x \geq 0, y \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

(a) What is the value of the constant c ? (b) What is $P[X \leq Y]$? (c) What is $P[X+Y \leq 1 / 2]$?

Problem 5: (Problem 4.4.3 from Yates and Goodman) Random variables X and Y have joint

PDF

$$
f_{X, Y}(x, y)= \begin{cases}6 e^{-(2 x+3 y)} & x \geq 0, y \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find $P[X>Y]$ and $P[X+Y \leq 1]$. (b) Find $P[\min (X, Y) \geq 1]$. (c) Find $P[\max (X, Y) \leq 1]$.

Problem 6: (Problem 4.5.5 from Yates and Goodman) Over the circle $X^{2}+Y^{2} \leq r^{2}$, random variable X and Y have the PDF

$$
f_{X, Y}(x, y)= \begin{cases}2|x y| / r^{4} & x^{2}+y^{2} \leq r^{2} \\ 0 & \text { otherwise }\end{cases}
$$

(a) What is the marginal PDF $f_{X}(x)$? (b) What is the marginal PDF $f_{Y}(y)$?

Problem 7: (Problem 4.5.6 from Yates and Goodman) Random variable X and Y have the joint PDF

$$
f_{X, Y}(x, y)= \begin{cases}c y & 0 \leq y \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Draw the region of nonzero probability. (b) What is the value of the constant c ? (c) What is $F_{X}(x)$? (d) What is $F_{Y}(y)$? (e) What is $P[Y \leq X / 2]$?

Problem 8: (Problem 4.6.2 from Yates and Goodman) Given random variables X and Y in Problem 2 and the function $W=X+2 Y$, find (a) The probability mass function $P_{W}(w)$, (b) The expected value $E[W]$, (c) $P[W>0]$.

Problem 9: (Problem 4.6.6 from Yates and Goodman) Random variables X and Y have joint PDF

$$
f_{X, Y}(x, y)= \begin{cases}x+y & 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Let $W=\max (X, Y)$. (a) What is S_{W}, the range of W ? (b) Find $F_{W}(w)$ and $f_{W}(w)$.

Problem 10: (Problem 4.6.8 from Yates and Goodman) Random variables X and Y have joint

PDF

$$
f_{X, Y}(x, y)= \begin{cases}2 & 0 \leq y \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Let $W=Y / X$. (a) What is S_{W}, the range of W ? (b) Find $F_{W}(w), f_{W}(w)$, and $E[W]$.

Problem 11: (Problem 4.7.10 from Yates and Goodman) Random variables X and Y have joint PDF

$$
f_{X, Y}(x, y)= \begin{cases}5 x^{2} / 2 & -1 \leq x \leq 1 \\ & 0 \leq y \leq x^{2} \\ 0 & \text { otherwise }\end{cases}
$$

(a) What are $E[X]$ and $\operatorname{Var}[X]$? (b) What are $E[Y]$ and $\operatorname{Var}[Y]$? (c) What is $\operatorname{Cov}[X, Y]$? (d) What is $E[X+Y]$? (e) What is $\operatorname{Var}[X+Y]$?

