EE-387 Probability for Electrical and Computer Engineers
 Assignment 5 (due 14:00 on Wednesday, August 10, 2005)

Problem 1: (Problem 4.8.7 from Yates and Goodman) Random variables X and Y have joint PDF

$$
f_{X, Y}(x, y)= \begin{cases}5 x^{2} / 2 & -1 \leq x \leq 1 ; 0 \leq y \leq x^{2} \\ 0 & \text { otherwise }\end{cases}
$$

Let $A=\{Y \leq 1 / 4\}$. (a) What is the conditional PDF $f_{X, Y \mid A}(x, y)$? (b) What is $f_{Y \mid A}(y)$? (c) What is $E[Y \mid A]$? (d) What is $f_{X \mid A}(x)$? (e) What is $E[X \mid A]$?

Problem 2: (Problem 4.9.4 from Yates and Goodman) Random variables X and Y have joint PDF

$$
f_{X, Y}(x, y)= \begin{cases}2 & 0 \leq y \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Find the $\operatorname{PDF} f_{Y}(y)$, the conditional $\operatorname{PDF} f_{X \mid Y}(x \mid y)$, and the conditional expected value $E[X \mid Y=y]$.

Problem 3: (Problem 4.11.2 from Yates and Goodman) Random variables X and Y have joint PDF

$$
f_{X, Y}(x, y)=c e^{-\left(2 x^{2}-4 x y+4 y^{2}\right)} .
$$

(a) What are $E[X]$ and $E[Y]$? (b) Find ρ, the correlation coefficient of X and Y. (c) What are $\operatorname{Var}[X]$ and $\operatorname{Var}[Y]$? (d) What is the constant c ? (e) Are X and Y independent?

Problem 4: (Problem 4.11.8 from Yates and Goodman) Let X_{1} and X_{2} have a bivariate Gaussian PDF with correlation coefficient ρ_{12} such that each X_{i} is a Gaussian random variable with mean μ_{i} and variance σ_{i}^{2}. Show that $Y=X_{1} X_{2}$ has variance

$$
\operatorname{Var}[Y]=\sigma_{1}^{2} \sigma_{2}^{2}\left(1+\rho_{12}^{2}\right)+\sigma_{1}^{2} \mu_{2}^{2}+\mu_{1}^{2} \sigma_{2}^{2}-\mu_{1}^{2} \mu_{2}^{2}
$$

Hints: Use the iterated expectation to calculate

$$
E\left[X_{1}^{2} X_{2}^{2}\right]=E\left[E\left[X_{1}^{2} X_{2}^{2} \mid X_{2}\right]\right] .
$$

Problem 5: (Problem 6.2.3 from Yates and Goodman) Random variables X and Y are independent exponential with expected values $E[X]=1 / \lambda$ and $E[Y]=1 / \mu$. If $\mu \neq \lambda$, what is the PDF of $W=X+Y$? If $\mu=\lambda$, what is $f_{W}(w)$?

Problem 6: (Problem 6.2.5 from Yates and Goodman) Random variables X and Y have joint PDF

$$
f_{X, Y}(x, y)= \begin{cases}8 x y & 0 \leq y \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

What is the PDF of $W=X+Y$?

Problem 7: (a) If X is an Erlang (n, λ) random variable, show that the moment generating function of X is given by

$$
\phi_{X}(s)=\left(\frac{\lambda}{\lambda-s}\right)^{n} .
$$

(b) If X is a Gaussian random variable with mean μ and variance σ^{2}, show that the moment generating function of X is given by

$$
\phi_{X}(s)=e^{s \mu+s^{2} \sigma^{2} / 2}
$$

Problem 8: Let X be a Gaussian random variable with mean zero and variance σ^{2}. Use the moment generating function to show that

$$
E[X]=0, E\left[X^{2}\right]=\sigma^{2}, E\left[X^{3}\right]=0, E\left[X^{4}\right]=3 \sigma^{4} .
$$

What can you say about $E\left[X^{n}\right]$ for arbitrary integer values of n ?

