EE-387 Probability for Electrical and Computer Engineers

Solution to Assignment 5

Problem 1: (Problem 4.8.7 from Yates and Goodman) Random variables X and Y have joint PDF

$$
f_{X, Y}(x, y)= \begin{cases}5 x^{2} / 2 & -1 \leq x \leq 1 ; 0 \leq y \leq x^{2} \\ 0 & \text { otherwise }\end{cases}
$$

Let $A=\{Y \leq 1 / 4\}$. (a) What is the conditional PDF $f_{X, Y \mid A}(x, y)$? (b) What is $f_{Y \mid A}(y)$? (c) What is $E[Y \mid A]$? (d) What is $f_{X \mid A}(x)$? (e) What is $E[X \mid A]$?

Solutiont: (a) $A=\{Y \leq 1 / 4\}$

$$
P[A]=P[Y \leq 1 / 4]=\int_{-1 / 2}^{1 / 2}\left(\int_{0}^{x^{2}} \frac{5 x^{2}}{2} d y\right) d x+2 \int_{1 / 2}^{1}\left(\int_{0}^{1 / 4} \frac{5 x^{2}}{2} d y\right) d x=\frac{19}{48}
$$

Therefore,

$$
f_{X, Y \mid A}(x, y)= \begin{cases}\frac{120 x^{2}}{19} & (x, y) \in A \\ 0 & \text { otherwise } .\end{cases}
$$

(b)

$$
\begin{aligned}
f_{Y \mid A}(y) & =\int_{-\infty}^{\infty} f_{X, Y \mid A}(x, y) d x \\
& =\int_{-1}^{-\sqrt{y}} f_{X, Y \mid A}(x, y) d x+\int_{\sqrt{y}}^{1} f_{X, Y \mid A}(x, y) d x \\
& =2 \int_{\sqrt{y}}^{1} f_{X, Y \mid A}(x, y) d x \\
& =\frac{80}{19}\left(1-y^{3 / 2}\right) .
\end{aligned}
$$

Therefore,

$$
f_{Y \mid A}(y)= \begin{cases}\frac{80}{19}\left(1-y^{3 / 2}\right) & 0 \leq y \leq 1 / 4 \\ 0 & \text { otherwise }\end{cases}
$$

(c) The conditional expectation of Y given A is

$$
E[Y \mid A]=\int_{-\infty}^{\infty} y f_{Y \mid A}(y) d y=\int_{0}^{1 / 4} y \frac{80}{19}\left(1-y^{3 / 2}\right) d y=\frac{65}{532}
$$

(d)

$$
f_{X \mid A}(x)=\int_{-\infty}^{\infty} f_{X, Y \mid A}(x, y) d y .
$$

Since limits will depend on the values of x, we consider for $-1 / 2 \leq x \leq 1 / 2$,

$$
f_{X \mid A}(x)=\int_{0}^{x^{2}} \frac{120}{19} x^{2} d y=\frac{120}{19} x^{4}
$$

and for $-1 \leq x<-1 / 2$ or $1 / 2<x \leq 1$,

$$
f_{X \mid A}(x)=\int_{0}^{1 / 4} \frac{120}{19} x^{2} d y=\frac{30}{19} x^{2} .
$$

Therefore,

$$
f_{X \mid A}(x)= \begin{cases}\frac{30}{19} x^{2} & -1 \leq x<-1 / 2 \\ \frac{120}{19} x^{4} & -1 / 2 \leq x \leq 1 / 2 \\ \frac{30}{19} x^{2} & 1 / 2<x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(e)

$$
E[X \mid A]=\int_{-1}^{-1 / 2} x \frac{30}{19} x^{2} d x+\int_{-1 / 2}^{1 / 2} x \frac{120}{19} x^{4} d x+\int_{1 / 2}^{1} x \frac{30}{19} x^{2} d x=0 .
$$

Problem 2: (Problem 4.9.4 from Yates and Goodman) Random variables X and Y have joint PDF

$$
f_{X, Y}(x, y)= \begin{cases}2 & 0 \leq y \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Find the $\operatorname{PDF} f_{Y}(y)$, the conditional $\operatorname{PDF} f_{X \mid Y}(x \mid y)$, and the conditional expected value $E[X \mid Y=y]$.
Solution:

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x=\int_{y}^{1} 2 d x=2(1-y)
$$

Therefore,

$$
f_{Y}(y)= \begin{cases}2(1-y) & 0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}= \begin{cases}\frac{1}{1-y} & y \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

That is given $Y=y, X$ is uniformly distributed in $[y, 1]$. The conditional expected value is

$$
E[X \mid Y=y]=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x=\int_{y}^{1} x \frac{1}{1-y} d x=\frac{1+y}{2} .
$$

Problem 3: (Problem 4.11.2 from Yates and Goodman) Random variables X and Y have joint PDF

$$
f_{X, Y}(x, y)=c e^{-\left(2 x^{2}-4 x y+4 y^{2}\right)}
$$

(a) What are $E[X]$ and $E[Y]$? (b) Find ρ, the correlation coefficient of X and Y. (c) What are $\operatorname{Var}[X]$ and $\operatorname{Var}[Y]$? (d) What is the constant c ? (e) Are X and Y independent?

Solution: (a) By matching the given joint PDF with the joint PDF of bivariate Gaussian, we obtain the following equations

$$
\begin{gathered}
\left(\frac{x-E[X]}{\sigma_{X}}\right)^{2}=4\left(1-\rho^{2}\right) x^{2} \\
\left(\frac{y-E[Y]}{\sigma_{Y}}\right)^{2}=8\left(1-\rho^{2}\right) y^{2} \\
\frac{2 \rho}{\sigma_{X} \sigma_{Y}}=8\left(1-\rho^{2}\right) .
\end{gathered}
$$

The first two equations give $E[X]=E[Y]=0$.
(b) The find the correlation coefficient ρ, we observe that

$$
\sigma_{X}=1 / \sqrt{4\left(1-\rho^{2}\right)} \quad \sigma_{Y}=1 / \sqrt{8\left(1-\rho^{2}\right)}
$$

Using σ_{X} and σ_{Y} in the third equation yields $\rho=1 / \sqrt{2}$.
(c) Since $\rho=1 / \sqrt{2}$, now we can solve for σ_{X} and σ_{Y} and get

$$
\sigma_{X}=1 / \sqrt{2} \quad \sigma_{Y}=1 / 2
$$

(d) From here we can solve for c as

$$
c=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}}=\frac{2}{\pi}
$$

(e) X and Y are dependent because $\rho \neq 0$.

Problem 4: (Problem 4.11.8 from Yates and Goodman) Let X_{1} and X_{2} have a bivariate Gaussian PDF with correlation coefficient ρ_{12} such that each X_{i} is a Gaussian random variable with mean μ_{i} and variance σ_{i}^{2}. Show that $Y=X_{1} X_{2}$ has variance

$$
\operatorname{Var}[Y]=\sigma_{1}^{2} \sigma_{2}^{2}\left(1+\rho_{12}^{2}\right)+\sigma_{1}^{2} \mu_{2}^{2}+\mu_{1}^{2} \sigma_{2}^{2}-\mu_{1}^{2} \mu_{2}^{2}
$$

Hints: Use the iterated expectation to calculate

$$
E\left[X_{1}^{2} X_{2}^{2}\right]=E\left[E\left[X_{1}^{2} X_{2}^{2} \mid X_{2}\right]\right] .
$$

Solution: Omitted.

Problem 5: (Problem 6.2.3 from Yates and Goodman) Random variables X and Y are independent exponential with expected values $E[X]=1 / \lambda$ and $E[Y]=1 / \mu$. If $\mu \neq \lambda$, what is the PDF of $W=X+Y$? If $\mu=\lambda$, what is $f_{W}(w)$?

Solution: PDF of W can be obtained by convolving two exponential distributions. (a) For $\lambda \neq \mu$,

$$
\begin{aligned}
f_{W}(w) & =\int_{-\infty}^{\infty} f_{X}(t) f_{Y}(w-t) d t \\
& =\int_{0}^{w} \lambda e^{-\lambda t} \mu e^{-\mu(w-t)} d t \\
& =\lambda \mu e^{-\mu w} \int_{0}^{w} e^{-(\lambda-\mu) t} d t= \begin{cases}\frac{\lambda \mu}{\lambda-\mu}\left[e^{-\mu w}-e^{-\lambda w}\right] & w \geq 0 \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

(b) for $\lambda=\mu$, previous expression becomes invalid because zero will appear in the denominator. However, PDF of W can again be obtained similarly as

$$
\begin{aligned}
f_{W}(w) & =\int_{0}^{w} \lambda e^{-\lambda t} \lambda e^{-\lambda(w-t)} d t \\
& =\lambda^{2} e^{-\lambda w} \int_{0}^{w} d t \\
& = \begin{cases}\lambda^{2} w e^{-\lambda w} & w \geq 0 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Note that when $\mu=\lambda, W$ is the sum of two independent, identically distributed exponential RVs and has a second order Erlang PDF.

Problem 6: (Problem 6.2.5 from Yates and Goodman) Random variables X and Y have joint PDF

$$
f_{X, Y}(x, y)= \begin{cases}8 x y & 0 \leq y \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

What is the PDF of $W=X+Y$?
Solution: Recall

$$
f_{W}(w)=\int_{-\infty}^{\infty} f_{X, Y}(x, w-x) d x
$$

where the integration is along the line $y=w-x$. Note since $W=X+Y$, we have the range for W as $S_{W}=\{w \mid 0 \leq w \leq 2\}$. For $0 \leq w \leq 1$,

$$
f_{W}(w)=\int_{w / 2}^{w} 8 x(w-x) d x=\frac{2 w^{3}}{3} .
$$

For $1 \leq w \leq 2$,

$$
f_{W}(w)=\int_{w / 2}^{1} 8 x(w-x) d x=4 w-\frac{8}{3}-\frac{2 w^{3}}{3} .
$$

Therefore, the complete expression for the PDF of W is

$$
f_{W}(w)= \begin{cases}\frac{2 w^{3}}{3} & 0 \leq w \leq 1 \\ 4 w-\frac{8}{3}-\frac{2 w^{3}}{3} & 1 \leq w \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Problem 7: (a) If X is an Erlang (n, λ) random variable, show that the moment generating function of X is given by

$$
\phi_{X}(s)=\left(\frac{\lambda}{\lambda-s}\right)^{n}
$$

(b) If X is a Gaussian random variable with mean μ and variance σ^{2}, show that the moment generating function of X is given by

$$
\phi_{X}(s)=e^{s \mu+s^{2} \sigma^{2} / 2}
$$

Solution: (a) The PDF for an Erlang (n, λ) is

$$
f_{X}(x)=\frac{\lambda^{n} x^{n-1} e^{-\lambda x}}{(n-1)!}, x \geq 0
$$

The MGF of X is just

$$
\begin{aligned}
\phi_{X}(s) & =E\left[e^{s X}\right] \\
& =\int_{0}^{\infty} e^{s x} \frac{\lambda^{n} x^{n-1} e^{-\lambda x}}{(n-1)!} d x \\
& =\frac{\lambda^{n}}{(n-1)!} \int_{0}^{\infty} x^{n-1} e^{-(\lambda-s) x} d x \\
& =\frac{\lambda^{n}}{(n-1)!} \cdot \frac{1}{(\lambda-s)^{n}} \underbrace{\int_{0}^{\infty} t^{n-1} e^{-t} d t}_{\Gamma(n)=(n-1)!} \\
& =\left(\frac{\lambda}{\lambda-s}\right)^{n}
\end{aligned}
$$

(b) The PDF for an Gaussian with mean μ and variance σ^{2} is

$$
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

The MGF of X is just

$$
\begin{aligned}
\phi_{X}(s) & =E\left[e^{s X}\right] \\
& =\int_{-\infty}^{\infty} e^{s x} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x \\
& =\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \left[-\frac{x^{2}-2\left(\mu+\sigma^{2} s\right) x+\mu^{2}}{2 \sigma^{2}}\right] d x \\
& =\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \left[-\frac{x^{2}-2\left(\mu+\sigma^{2} s\right) x+\left(\mu+\sigma^{2} s\right)^{2}-\left(\mu+\sigma^{2} s\right)^{2}+\mu^{2}}{2 \sigma^{2}}\right] d x \\
& =\exp \left[\mu s+\sigma^{2} s^{2} / 2\right] \underbrace{\int_{-\infty}^{\infty} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{\left(x-\left(\mu+\sigma^{2} s\right)\right)^{2}}{2 \sigma^{2}}\right] d x}_{=1} \\
& =e^{s \mu+s^{2} \sigma^{2} / 2} .
\end{aligned}
$$

Problem 8: Let X be a Gaussian random variable with mean zero and variance σ^{2}. Use the moment generating function to show that

$$
E[X]=0, E\left[X^{2}\right]=\sigma^{2}, E\left[X^{3}\right]=0, E\left[X^{4}\right]=3 \sigma^{4}
$$

What can you say about $E\left[X^{n}\right]$ for arbitrary integer values of n ?
Solution: From Problem 7, the moment generating function for X is

$$
\phi_{X}(s)=e^{s^{2} \sigma^{2} / 2}
$$

Therefore,

$$
\begin{gathered}
E[X]=\left.\frac{d \phi_{X}(s)}{d s}\right|_{s=0}=\left.e^{s^{2} \sigma^{2} / 2}\left(s \sigma^{2}\right)\right|_{s=0}=0 . \\
E\left[X^{2}\right]=\left.\frac{d^{2} \phi_{X}(s)}{d s^{2}}\right|_{s=0}=\sigma^{2} e^{s^{2} \sigma^{2} / 2}+\left.\left(s^{2} \sigma^{4}\right) e^{s^{2} \sigma^{2} / 2}\right|_{s=0}=\sigma^{2} .
\end{gathered}
$$

Continuing in this manner and we can show that

$$
E\left[X^{3}\right]=\left.\left(3 \sigma^{4} s+\sigma^{6} s^{3}\right) e^{\sigma^{2} s^{2} / 2}\right|_{s=0}=0
$$

and

$$
E\left[X^{4}\right]=\left.\left(3 \sigma^{4}+6 \sigma^{6} s^{2}+\sigma^{8} s^{4}\right) e^{\sigma^{2} s^{2} / 2}\right|_{s=0}=3 \sigma^{4}
$$

In general, one can deduce

$$
E\left[X^{n}\right]= \begin{cases}0 & n=2 k+1, \\ (1)(3) \cdots(n-1) \sigma^{n} & n=2 k\end{cases}
$$

