EE 3025 S2005 Homework Set \#12 Solutions

(We will be grading Problems 1-3)

Solution to Problem 1:

Solution to (a): Fourier transforming $R_{X}(\tau)$, you get

$$
\begin{aligned}
S_{X}(f) & =8-4 \exp (-j 2 \pi f)-4 \exp (j 2 \pi f)+\exp (-4 \pi f)+\exp (4 \pi f) \\
& =8-8 \cos (2 \pi f)+2 \cos (4 \pi f)
\end{aligned}
$$

```
f=0:.01:2;
SXf=8-8*\operatorname{cos}(2*pi*f)+2*\operatorname{cos}(4*pi*f);
plot(f,SXf)
```


Solution to (b):

```
N = ; %enter here the number of samples N you want
a=1+sqrt(2);b=-sqrt(2); c=-1+sqrt (2);
z=randn(1,N+2);
x=a*z(3:N+2)+b*z(2:N+1)+c*z(1:N);
```

Solution to (c): The fft works best with a number of samples equal to a power of two. I decided to use 32768 samples.

```
N=32768;
a=1+sqrt (2);b=-sqrt (2); c=-1+sqrt (2);
z=randn(1,N+2);
x=a*z(3:N+2)+b*z(2:N+1)+c*z(1:N);
pgram = abs(fft(x)).^2/N;
f=(0:2*N-1)/N;
plot(f,[pgram pgram])
```


Solution to (d): I decided to use 32768 samples in total, divided up into 64 groups of 512 samples each.

```
clear
N1=512;
N2=64;
N=N1*N2;
a=1+squrt(2);b=-sqrt (2); c=-1+squrt (2) ;
z=randn(1,N+2);
x=a*z(3:N+2)+b*z(2:N+1)+c*z(1:N);
s=zeros(1,N1);
for j=1:N2
segment=x ((j-1)*N1+1:j*N1);
periodogram=abs(fft(segment)). `2/N1;
```

s=s+periodogram;
end
SXhat=s/N2;
$\mathrm{f}=(0: 2 * \mathrm{~N} 1-1) / \mathrm{N} 1$;
plot(f,[SXhat SXhat])

Solution to Problem 2:

Solution to (a): Looking at the earlier problem's solution, you see that the periodic $R_{X}(\tau)$ is equal to $1-4 \tau$ for $0 \leq \tau \leq 1 / 2$. This is all you need. The k-th Fourier coefficient of $R_{X}(\tau)$ is then computable as

$$
\begin{aligned}
a_{k} & =\int_{-1 / 2}^{1 / 2} R_{X}(\tau) \exp (-j k 2 \pi \tau) d \tau \\
& =2 \int_{0}^{1 / 2}(1-4 \tau) \cos (j k 2 \pi \tau) d \tau
\end{aligned}
$$

You can integrate by parts or use Matlab. You get

$$
a_{k}=\left\{\begin{aligned}
0, & k=0, \pm 2, \pm 4, \pm 6, \cdots \\
\frac{4}{k^{2} \pi^{2}}, & k= \pm 1, \pm 3, \pm 5, \cdots
\end{aligned}\right.
$$

We can write the power spectrum as

$$
S_{X}(f)=\sum_{j=1}^{\infty}\left(\frac{4}{(2 j-1)^{2} \pi^{2}}\right)[\delta(f-2 j+1)+\delta(f+2 j-1)] .
$$

Solution to (b): For bandwidth $B=1.5$ or bandwidth $B=2.5$, the filter output power is $8 / \pi^{2}$, which is 81.06% of the input power (since the input power is 1). For bandwidth $B=3.5$ or bandwidth $B=4.5$, the filter output power is $\left(8 / \pi^{2}\right)+8 /\left(9 \pi^{2}\right)$, which is 90.06% of the input power. For bandwidth $B=5.5$, the filter output power is $\left(4 / \pi^{2}\right)+4 /\left(9 \pi^{2}\right)+4 /\left(25 \pi^{2}\right)$, which is 93.31% of the input power.

bandwidth	power ratio percentage
1.5	81.06
2.5	81.06
3.5	90.06
4.5	90.06
5.5	93.31

Solution to (c): $B=3.5$ is the smallest of the bandwidths that you were given to choose from, for which the power ratio is at least 90%. This is clear from the table constructed in the solution to (b).

Solution to Problem 3:

Solution to (a): Referring to Section 40.4 of the class notes, you see that the system to solve is

$$
\left[\begin{array}{lll}
R_{Y}(0) & R_{Y}(1) & R_{Y}(2) \\
R_{Y}(1) & R_{Y}(0) & R_{Y}(1) \\
R_{Y}(2) & R_{Y}(1) & R_{Y}(0)
\end{array}\right]\left[\begin{array}{l}
h[0] \\
h[1] \\
h[2]
\end{array}\right]=\left[\begin{array}{l}
R_{X}(0) \\
R_{X}(1) \\
R_{X}(2)
\end{array}\right],
$$

which reduces in this case to

$$
\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
h[0] \\
h[1] \\
h[2]
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right],
$$

because

$$
\begin{aligned}
R_{X}(0) & =2 \\
R_{X}(1) & =1 \\
R_{X}(2) & =0 \\
R_{Y}(0) & =R_{X}(0)+R_{Z}(0)=3 \\
R_{Y}(1) & =R_{X}(1)+R_{Z}(1)=1 \\
R_{Y}(2) & =R_{X}(2)+R_{Z}(2)=0
\end{aligned}
$$

The solutions are

$$
h[0]=13 / 21, \quad h[1]=1 / 7, \quad h[2]=-1 / 21 .
$$

Solution to (b): We have

$$
\begin{aligned}
E\left[X_{n} Y_{n}\right] & =E\left[X_{n}^{2}\right]+E\left[X_{n} Z_{n}\right]=R_{X}(0)+0=2 \\
E\left[X_{n} Y_{n-1}\right] & =E\left[X_{n} X_{n-1}\right]+E\left[X_{n} Z_{n-1}\right]=R_{X}(1)+0=1 \\
E\left[X_{n} Y_{n-2}\right] & =E\left[X_{n} X_{n-2}\right]+E\left[X_{n} Z_{n-2}\right]=R_{X}(2)+0=0
\end{aligned}
$$

The MS estimation error is then

$$
R_{X}(0)-h[0](2)-h1-h[2](0)=13 / 21
$$

In decibels, this is

$$
10 \log _{10} \frac{2}{13 / 21}=5.09 \text { decibels }
$$

Solution to (c): We have

$$
\begin{aligned}
S_{X}(f) & =2+2 \cos (2 \pi f) \\
S_{Z}(f) & =1
\end{aligned}
$$

This gives us

$$
E_{W i e n e r}=\int_{0}^{1} \frac{2+2 \cos (2 \pi f)}{3+2 \cos (2 \pi f)} d f=1-\sqrt{5} / 5=0.5528
$$

In decibels, this is

$$
10 \log _{10} \frac{2}{.5528}=5.58 \text { decibels }
$$

Our conclusion is that you can improve about half a decibel in system performance if you use a more sophisticated receiver than the one in part(a).

Solution to Problem 4:

Solution to (a): The decibel figure without filtering is

$$
10 \log _{10} \frac{P_{X}}{P_{Z}}=10 \log _{10}(2)=3.01 \text { decibels }
$$

Solution to (b): The signal part of the output power is the matrix triple product

$$
\left[\begin{array}{lll}
h[0] & h[1] & h[2]
\end{array}\right]\left[\begin{array}{lll}
R_{X}(0) & R_{X}(1) & R_{X}(2) \\
R_{X}(1) & R_{X}(0) & R_{X}(1) \\
R_{X}(2) & R_{X}(1) & R_{X}(0)
\end{array}\right]\left[\begin{array}{c}
h[0] \\
h[1] \\
h[2]
\end{array}\right] .
$$

For the filter coefficients in (a) of Problem 4, this gives us

$$
\left[\begin{array}{lll}
13 / 21 & 1 / 7 & -1 / 21
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{c}
13 / 21 \\
1 / 7 \\
-1 / 21
\end{array}\right]=0.9751 .
$$

The noise part of the output power is

$$
h[0]^{2}+h[1]^{2}+h[2]^{2}=(13 / 21)^{2}+(1 / 7)^{2}+(-1 / 21)^{2}=0.4069 .
$$

The SNR is therefore

$$
10 \log _{10} \frac{0.9751}{0.4069}=3.81 \text { decibels. }
$$

Solution to (c): Simply adapt the Matlab script provided in Example 41.1 of the class notes:

```
R=toeplitz([2 1 0]);
[a,b]=eig(R)
a =
    0.5000 -0.7071 -0.5000
    0.7071 0.0000 0.7071
    0.5000 0.7071 -0.5000
b =
\begin{tabular}{rrr}
3.4142 & 0 & 0 \\
0 & 2.0000 & 0 \\
0 & 0 & 0.5858
\end{tabular}
```

The largest eigenvalue of the 3×3 correlation matrix of the X samples is clearly 3.4142. The corresponding eigenvector is therefore the first column of the matrix a. We can base our tap weights on this eigenvector:

$$
h[0]=0.5000, \quad h[1]=0.7071, \quad h[2]=0.5000 .
$$

We indeed have

$$
h[0]^{2}+h[1]^{2}+h[2]^{2}=1
$$

and so the resulting SNR (which is maximal) is

$$
10 \log _{10} \frac{3.4142}{1}=5.33 \text { decibels. }
$$

(The power due to the signal part of the receiver output will always be the largest eigenvalue of the 3×3 correlation matrix of the X samples, for the max SNR filter.)

Solution to Problem 5:

Solution to (a): The mean function of the output process $X(t)$ is zero because the mean function of white noise is zero and we are doing linear filtering. Therefore,

$$
E[X(4)]=0 .
$$

By the double integral trick explained in the Lecture 41 notes, we have

$$
\operatorname{Var}(X(4))=E\left[X(4)^{2}\right]=\int_{0}^{4} \int_{0}^{4} s_{1} s_{2} \delta\left(s_{1}-s_{2}\right) d s_{1} d s_{2} .
$$

We have to compute

$$
\int_{0}^{4} s_{1} \delta\left(s_{1}-s_{2}\right) d s_{1} .
$$

By the "sifting property" of the delta function,

$$
s_{1} \delta\left(s_{1}-s_{2}\right)=s_{2} \delta\left(s_{1}-s_{2}\right)
$$

where here s_{1} is the variable and s_{2} is held fixed. Also we have the following indefinite integral:

$$
\int \delta\left(s_{1}-s_{2}\right) d s_{1}=u\left(s_{1}-s_{2}\right)
$$

It follows that

$$
\int_{0}^{4} s_{1} \delta\left(s_{1}-s_{2}\right) d s_{1}=s_{2}\left[u\left(4-s_{2}\right)-u\left(-s_{2}\right)\right]
$$

It is easy to see that $u\left(4-s_{2}\right)-u\left(-s_{2}\right)$, as a function of s_{2}, is a rectangular pulse of amplitude 1 that goes from $s_{2}=0$ to $s_{2}=4$. We conclude that

$$
\begin{aligned}
\operatorname{Var}[X(4)] & =\int_{0}^{4} s_{2}\left[\int_{0}^{4} s_{1} \delta\left(s_{1}-s_{2}\right) d s_{1}\right] d s_{2} \\
& =\int_{0}^{4} s_{2}^{2}\left[u\left(4-s_{2}\right)-u\left(-s_{2}\right)\right] d s_{2} \\
& =\int_{0}^{4} s_{2}^{2} d s_{2}=64 / 3
\end{aligned}
$$

Let $f\left(x_{4}\right)$ denote the density of $X(4)$. Since $X(4)$ is Gaussian with mean 0 , we must have

$$
f\left(x_{4}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{X(4)}} \exp \left(-x_{4}^{2} / 2 \sigma_{X(4)}^{2}\right)=\frac{1}{\sqrt{128 \pi / 3}} \exp \left(-3 x_{4}^{2} / 128\right)
$$

Solution to (b): Using independent increments property,

$$
\begin{aligned}
\operatorname{Cov}(X(4), X(7)) & =E[X(4) X(7)] \\
& =E[X(4)(X(7)-X(4))]+E[X(4)]^{2} \\
& =E[X(4)] E[X(7)-X(4)]+64 / 3=0+64 / 3=64 / 3
\end{aligned}
$$

The correlation coefficient ρ is given by

$$
\rho=\frac{\operatorname{Cov}(X(4), X(7))}{\sqrt{\operatorname{Var}(X(4)) \operatorname{Var}(X(7))}}
$$

Similarly to what was done in (a), one can show that

$$
\operatorname{Var}(X(7))=7^{3} / 3=343 / 3
$$

Therefore,

$$
\rho=\frac{64 / 3}{\sqrt{(64 / 3)(343 / 3)}}=\frac{8}{\sqrt{343}}=0.4320 .
$$

Let $f\left(x_{4}, x_{7}\right)$ denote the joint PDF of $(X(4), X(7))$. Plugging into the form of the bivariate Gaussian density on page 191 of your textbook, you get

$$
f\left(x_{4}, x_{7}\right)=\frac{3}{16 \pi \sqrt{279}} \exp \left[-\frac{1029\left(x_{4}^{2} / 64\right)-6 x_{4} x_{7}+3 x_{7}^{2}}{558}\right]
$$

