
EE 3025 S2005 Homework Set #12 Solutions
(We will be grading Problems 1-3)

Solution to Problem 1:

Solution to (a): Fourier transforming RX(�), you get

SX(f) = 8� 4 exp(�j2�f)� 4 exp(j2�f) + exp(�4�f) + exp(4�f)

= 8� 8 cos(2�f) + 2 cos(4�f)

f=0:.01:2;

SXf=8-8*cos(2*pi*f)+2*cos(4*pi*f);

plot(f,SXf)
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Solution to (b):

N = ; %enter here the number of samples N you want

a=1+sqrt(2);b=-sqrt(2);c=-1+sqrt(2);

z=randn(1,N+2);

x=a*z(3:N+2)+b*z(2:N+1)+c*z(1:N);

Solution to (c): The �t works best with a number of samples equal to a power of
two. I decided to use 32768 samples.



N=32768;

a=1+sqrt(2);b=-sqrt(2);c=-1+sqrt(2);

z=randn(1,N+2);

x=a*z(3:N+2)+b*z(2:N+1)+c*z(1:N);

pgram = abs(fft(x)).^2/N;

f=(0:2*N-1)/N;

plot(f,[pgram pgram])
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Solution to (d): I decided to use 32768 samples in total, divided up into 64 groups
of 512 samples each.

clear

N1=512;

N2=64;

N=N1*N2;

a=1+sqrt(2);b=-sqrt(2);c=-1+sqrt(2);

z=randn(1,N+2);

x=a*z(3:N+2)+b*z(2:N+1)+c*z(1:N);

s=zeros(1,N1);

for j=1:N2

segment=x((j-1)*N1+1:j*N1);

periodogram=abs(fft(segment)).^2/N1;



s=s+periodogram;

end

SXhat=s/N2;

f=(0:2*N1-1)/N1;

plot(f,[SXhat SXhat])
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Solution to Problem 2:

Solution to (a): Looking at the earlier problem's solution, you see that the periodic
RX(�) is equal to 1� 4� for 0 � � � 1=2. This is all you need. The k-th Fourier
coeÆcient of RX(�) is then computable as

ak =
Z 1=2

�1=2
RX(�) exp(�jk2��)d�

= 2
Z 1=2

0
(1� 4�) cos(jk2��)d�

You can integrate by parts or use Matlab. You get

ak =

(
0; k = 0;�2;�4;�6; � � �

4
k2�2

; k = �1;�3;�5; � � �
We can write the power spectrum as

SX(f) =
1X
j=1

 
4

(2j � 1)2�2

!
[Æ(f � 2j + 1) + Æ(f + 2j � 1)]:



Solution to (b): For bandwidth B = 1:5 or bandwidth B = 2:5, the �lter output
power is 8=�2, which is 81.06% of the input power (since the input power is
1). For bandwidth B = 3:5 or bandwidth B = 4:5, the �lter output power is
(8=�2) + 8=(9�2), which is 90.06% of the input power. For bandwidth B = 5:5,
the �lter output power is (4=�2) + 4=(9�2) + 4=(25�2), which is 93.31% of the
input power.

bandwidth power ratio percentage

1.5 81.06

2.5 81.06

3.5 90.06

4.5 90.06

5.5 93.31

Solution to (c): B = 3:5 is the smallest of the bandwidths that you were given to
choose from, for which the power ratio is at least 90%. This is clear from the
table constructed in the solution to (b).

Solution to Problem 3:

Solution to (a): Referring to Section 40.4 of the class notes, you see that the system
to solve is 2

64
RY (0) RY (1) RY (2)
RY (1) RY (0) RY (1)
RY (2) RY (1) RY (0)

3
75
2
64
h[0]
h[1]
h[2]

3
75 =

2
64
RX(0)
RX(1)
RX(2)

3
75 ;

which reduces in this case to2
64 3 1 0
1 3 1
0 1 3

3
75
2
64 h[0]
h[1]
h[2]

3
75 =

2
64 2
1
0

3
75 ;

because

RX(0) = 2

RX(1) = 1

RX(2) = 0

RY (0) = RX(0) +RZ(0) = 3

RY (1) = RX(1) +RZ(1) = 1

RY (2) = RX(2) +RZ(2) = 0

The solutions are

h[0] = 13=21; h[1] = 1=7; h[2] = �1=21:
Solution to (b): We have

E[XnYn] = E[X2
n] + E[XnZn] = RX(0) + 0 = 2

E[XnYn�1] = E[XnXn�1] + E[XnZn�1] = RX(1) + 0 = 1

E[XnYn�2] = E[XnXn�2] + E[XnZn�2] = RX(2) + 0 = 0



The MS estimation error is then

RX(0)� h[0](2)� h[1](1)� h[2](0) = 13=21:

In decibels, this is

10 log10
2

13=21
= 5:09 decibels:

Solution to (c): We have

SX(f) = 2 + 2 cos(2�f)

SZ(f) = 1

This gives us

EWiener =
Z 1

0

2 + 2 cos(2�f)

3 + 2 cos(2�f)
df = 1�

p
5=5 = 0:5528:

In decibels, this is

10 log10
2

:5528
= 5:58 decibels:

Our conclusion is that you can improve about half a decibel in system performance
if you use a more sophisticated receiver than the one in part(a).

Solution to Problem 4:

Solution to (a): The decibel �gure without �ltering is

10 log10
PX
PZ

= 10 log10(2) = 3:01 decibels:

Solution to (b): The signal part of the output power is the matrix triple product

h
h[0] h[1] h[2]

i 264 RX(0) RX(1) RX(2)
RX(1) RX(0) RX(1)
RX(2) RX(1) RX(0)

3
75
2
64 h[0]
h[1]
h[2]

3
75 :

For the �lter coeÆcients in (a) of Problem 4, this gives us

h
13=21 1=7 �1=21

i 264
2 1 0
1 2 1
0 1 2

3
75
2
64

13=21
1=7
�1=21

3
75 = 0:9751:

The noise part of the output power is

h[0]2 + h[1]2 + h[2]2 = (13=21)2 + (1=7)2 + (�1=21)2 = 0:4069:

The SNR is therefore

10 log10
0:9751

0:4069
= 3:81 decibels:



Solution to (c): Simply adapt the Matlab script provided in Example 41.1 of the
class notes:

R=toeplitz([2 1 0]);

[a,b]=eig(R)

a =

0.5000 -0.7071 -0.5000

0.7071 0.0000 0.7071

0.5000 0.7071 -0.5000

b =

3.4142 0 0

0 2.0000 0

0 0 0.5858

The largest eigenvalue of the 3� 3 correlation matrix of the X samples is clearly
3:4142. The corresponding eigenvector is therefore the �rst column of the matrix
a. We can base our tap weights on this eigenvector:

h[0] = 0:5000; h[1] = 0:7071; h[2] = 0:5000:

We indeed have
h[0]2 + h[1]2 + h[2]2 = 1

and so the resulting SNR (which is maximal) is

10 log10
3:4142

1
= 5:33 decibels:

(The power due to the signal part of the receiver output will always be the largest
eigenvalue of the 3 � 3 correlation matrix of the X samples, for the max SNR
�lter.)

Solution to Problem 5:

Solution to (a): The mean function of the output process X(t) is zero because the
mean function of white noise is zero and we are doing linear �ltering. Therefore,

E[X(4)] = 0:

By the double integral trick explained in the Lecture 41 notes, we have

V ar(X(4)) = E[X(4)2] =
Z 4

0

Z 4

0
s1s2Æ(s1 � s2)ds1ds2:

We have to compute Z 4

0
s1Æ(s1 � s2)ds1:



By the \sifting property" of the delta function,

s1Æ(s1 � s2) = s2Æ(s1 � s2);

where here s1 is the variable and s2 is held �xed. Also we have the following
inde�nite integral: Z

Æ(s1 � s2)ds1 = u(s1 � s2):

It follows that Z 4

0
s1Æ(s1 � s2)ds1 = s2[u(4� s2)� u(�s2)]:

It is easy to see that u(4� s2)�u(�s2), as a function of s2, is a rectangular pulse
of amplitude 1 that goes from s2 = 0 to s2 = 4. We conclude that

V ar[X(4)] =
Z 4

0
s2

�Z 4

0
s1Æ(s1 � s2)ds1

�
ds2

=
Z 4

0
s22[u(4� s2)� u(�s2)]ds2

=
Z 4

0
s22ds2 = 64=3:

Let f(x4) denote the density of X(4). Since X(4) is Gaussian with mean 0, we
must have

f(x4) =
1p

2��X(4)

exp(�x24=2�2
X(4)) =

1q
128�=3

exp(�3x24=128):

Solution to (b): Using independent increments property,

Cov(X(4); X(7)) = E[X(4)X(7)]

= E[X(4)(X(7)�X(4))] + E[X(4)]2

= E[X(4)]E[X(7)�X(4)] + 64=3 = 0 + 64=3 = 64=3

The correlation coeÆcient � is given by

� =
Cov(X(4); X(7))q

V ar(X(4))V ar(X(7))
:

Similarly to what was done in (a), one can show that

V ar(X(7)) = 73=3 = 343=3:

Therefore,

� =
64=3q

(64=3)(343=3)
=

8p
343

= 0:4320:

Let f(x4; x7) denote the joint PDF of (X(4); X(7)). Plugging into the form of the
bivariate Gaussian density on page 191 of your textbook, you get

f(x4; x7) =
3

16�
p
279

exp

"
�1029(x24=64)� 6x4x7 + 3x27

558

#
:


