EE 3025 S2005 Homework Set \#4 Solutions

Problems 1,3 to be graded by Mr. AlHussien
Problem 5 to be graded by Mr. Msechu (each graded problem worth 10 POINTS)

Solution to Problem 1.

part(a):
x1=10*ones $(1,100000)$; \%simulates 100000 throws if foul occurs
$\mathrm{x} 2=10 *$ rand $(1,100000)+60$; \%simulates 100000 throws if foul doesn't occur $\mathrm{b}=(\mathrm{rand}(1,100000)>0.1)$; \%binary "switch states" (1=nonfoul, 0=foul)
$\mathrm{x}=\mathrm{b} . * \mathrm{x} 2+(1-\mathrm{b}) . * \mathrm{x} 1$; \%desired samples

part(b):
$\mathrm{x}=\sin (0.5 * \mathrm{pi} * r a n d(1,100000))$; \%simulated X values
The estimated CDF plot is at top of next page.

If we measure up to the above curve from the point 0.5 on the horizontal axis, it does seem that we are measuring up a distance of about 0.33 .

Solution to Problem 2:

part(a): The new density is

$$
f_{Y}(y)=(1 / 2) f_{X}\left(\frac{(y-7)}{-2}\right)
$$

The interval over which Y is distributed is clearly [5, 7]. Because of the reflection involved, the Y density would be a "backward ramp" over the interval [5, 7]. It reaches a max height of 1 . This is enough info to draw the plot:

You compute the new mean and variance from the formulas:

$$
\begin{aligned}
\mu_{Y} & =(-2) \mu_{X}+7 \\
\sigma_{Y}^{2} & =(-2)^{2} \sigma_{X}^{2}=4 \sigma_{X}^{2}
\end{aligned}
$$

part(b): From Appendix A, you see that a Uniform(0,1) RV has mean $1 / 2$ and variance $1 / 12$. You find a, b by solving the equations:

$$
\begin{aligned}
20 & =a(1 / 2)+b \\
5 & =a^{2}(1 / 12)
\end{aligned}
$$

There are actually two solutions depending upon whether you take a to be positive or negative. Either answer is acceptable.

Solution to Problem 3.

part(a):

$$
\phi_{X}(s)=E\left[e^{s X}\right]=(0.20) \exp (6 s)+(0.16) \sum_{i=1}^{5} \exp (i s) .
$$

part(b):

$$
\phi_{X}^{\prime}(s)=(1.2) \exp (6 s)+(0.16) \sum_{i=1}^{5} i \exp (i s) .
$$

Plugging in $s=0$,

$$
\mu_{X}=1.2+(0.16)[1+2+3+4+5]=3.6 .
$$

part(c): Taking another derivative,

$$
\phi_{X}^{\prime \prime}(s)=(7.2) \exp (6 s)+(0.16) \sum_{i=1}^{5} i^{2} \exp (i s) .
$$

Plugging in $s=0$,

$$
E\left[X^{2}\right]=7.2+(0.16)[1+4+9+16+25]=16
$$

Therefore,

$$
\sigma_{X}^{2}=E\left[X^{2}\right]-\mu_{X}^{2}=16-(3.6)^{2}=3.04
$$

Solution to Problem 4. (a): By inspection, the first cond PMF plot consists of 5 spikes of height $1 / 5$ each at points $1,2,3,4,5$. The second cond PMF plot consists of 5 spikes of height $1 / 5$ at points $6,7,8,9,10$.
(b): Let B_{1}, B_{2} be the events that X takes a value to the left and right of 5.5 , respectively. From the two individual cond PMF plots, it is clear that

$$
\begin{aligned}
& P\left(3 \leq X \leq 7 \mid B_{1}\right)=3 / 5 \\
& P\left(3 \leq X \leq 7 \mid B_{2}\right)=2 / 5
\end{aligned}
$$

The overall prob should be

$$
P(3 \leq X \leq 7)=P\left(B_{1}\right)(3 / 5)+P\left(B_{2}\right)(2 / 5)=(1 / 3)(3 / 5)+(2 / 3)(2 / 5)=0.4667 .
$$

If we compute this prob directly from the original PMF, we get:

$$
P^{X}(3)+P^{X}(4)+P^{X}(5)+P^{X}(6)+P^{X}(7)=3(1 / 15)+2(2 / 15)=7 / 15=0.4667 .
$$

part(c): The two conditional means are the midpoints of their respective cond dists (by symmetry):

$$
E\left(X \mid B_{1}\right)=3, \quad E\left(X \mid B_{2}\right)=8
$$

Therefore, the overall mean should be computable as

$$
E(X)=(1 / 3) 3+(2 / 3) 8=6.3333
$$

Computing $E(X)$ directly from the original PMF yields:

$$
E(X)=(1 / 15)(1+2+3+4+5)+(2 / 15)(6+7+8+9+10)=6.3333
$$

Solution to Problem 5. The original density is

$$
f_{X}(x)=\left\{\begin{aligned}
C x^{2}, & 1 \leq x \leq 5 \\
0, & \text { elsewhere }
\end{aligned}\right.
$$

where $C=.0242$.
part(a): Let B_{1}, B_{2} be the "left and right events". For the range from $x=1$ to $x=2.5$, we have

$$
f_{X \mid B_{1}}(x)=\frac{C x^{2}}{\int_{1}^{2.5} C u^{2} d u}=(8 / 39) x^{2}=(0.2051) x^{2}, \quad 1 \leq x \leq 2.5
$$

(The cond density is zero elsewhere.) For the range $x=2.5$ to $x=5$, we have

$$
f_{X \mid B_{2}}(x)=\frac{C x^{2}}{\int_{2.5}^{5} C u^{2} d u}=(24 / 875) x^{2}=(0.0274) x^{2}, \quad 2.5 \leq x \leq 5
$$

(The cond density is zero elsewhere.) part(b):

$$
\begin{aligned}
& E\left(X \mid B_{1}\right)=\int_{1}^{2.5} x(8 / 39) x^{2} d x=203 / 104=1.9519 \\
& E\left(X \mid B_{2}\right)=\int_{2.5}^{5} x(24 / 875) x^{2} d x=225 / 56=4.0179
\end{aligned}
$$

The overall mean should be computable as:

$$
E(X)=P\left(B_{1}\right) E\left(X \mid B_{1}\right)+P\left(B_{2}\right) E\left(X \mid B_{2}\right)=(117 / 992) 1.9519+(875 / 992) 4.0179=3.7742
$$

Doing the computation directly, we get

$$
E(X)=\int_{1}^{5} C x^{3} d x=117 / 31=3.7742
$$

part(c):

$$
\begin{gathered}
E\left(X^{2} \mid B_{1}\right)=\int_{1}^{2.5} x^{2}(8 / 39) x^{2} d x=3.9654 \\
E\left(X^{2} \mid B_{2}\right)=\int_{2.5}^{5} x^{2}(24 / 875) x^{2} d x=16.6071
\end{gathered}
$$

The conditional variances are therefore:

$$
\begin{gathered}
\operatorname{Var}\left(X \mid B_{1}\right)=3.9654-(1.9519)^{2}=0.1555 \\
\operatorname{Var}\left(X \mid B_{2}\right)=16.6071-(4.0179)^{2}=0.4636
\end{gathered}
$$

This gives us

$$
\operatorname{Var}\left(X \mid B_{1}\right) P\left(B_{1}\right)+\operatorname{Var}\left(X \mid B_{2}\right) P\left(B_{2}\right)=0.1555(117 / 992)+0.4636(875 / 992)=0.4273
$$

On the other hand,

$$
\operatorname{Var}(X)=\int_{1}^{5} x^{2}\left(C x^{2}\right) d x-(3.7742)^{2}=15.1161-(3.7742)^{2}=0.8715
$$

Therefore

$$
\operatorname{Var}(X) \neq \operatorname{Var}\left(X \mid B_{1}\right) P\left(B_{1}\right)+\operatorname{Var}\left(X \mid B_{2}\right) P\left(B_{2}\right)
$$

