EE 3025 S2005 Homework Set \#6 Solutions

Mr. Msechu is grading Problem 1 and Problem 4(a)(b)
Mr. AlHussien is grading Problem 2(a)(b)

Solution to Problem 1.

(a) Use the script:

```
a=0;b=2;
x=(b-a)*rand (1,50000)+a; y=(b-a)*rand (1,50000)+a;
MonteCarlo_estimate=4*mean(log(x.*y+2))
```

The averages of the runs seem to be giving about 4.24.
(b) You can use a double for loop. A faster approach is to use Matlab meshgrid command which you can learn about in Experiment 5 of Recitation 6.

```
Delta= ; %enter Delta value
N=2/Delta;
x=Delta/2+Delta*(0:N-1); y=Delta/2+Delta*(0:N-1);
[X,Y]=meshgrid(x,y);
Z=log(X.*Y+2);
Integral_estimate=Delta^2*sum(sum(Z))
```

$$
\begin{aligned}
\Delta=0.1 & \Rightarrow \text { estimate }=4.2382 \\
\Delta=0.05 & \Rightarrow \text { estimate }=4.2379 \\
\Delta=0.02 & \Rightarrow \text { estimate }=4.2378
\end{aligned}
$$

The value of the integral is probably 4.24 to two decimal places.

Solution to Problem 2.

(a) X ranges from 0 to 1 . If you plot the curve $x=\sin ((0.5) \pi u)$ you will see that for $0<x<1$,

$$
P(X \leq x)=P\left(U \leq(2 / \pi) \operatorname{Sin}^{-1}(x)\right)=(2 / \pi) \operatorname{Sin}^{-1}(x) .
$$

Differentiating with respect to x, we see that

$$
f_{X}(x)=\left\{\begin{aligned}
\frac{2}{\pi \sqrt{1-x^{2}}}, & 0<x<1 \\
0, & \text { elsewhere }
\end{aligned}\right.
$$

(b) X ranges from 0 to ∞. If you fix $x>0$, you see from the plot of the curve $x=z^{2}$ that

$$
P(X \leq x)=P(-\sqrt{x} \leq Z \leq \sqrt{x})=F_{Z}(\sqrt{x})-F_{Z}(-\sqrt{x}) .
$$

Differentiating with respect to x, we conclude that

$$
f_{X}(x)=\left(\frac{1}{2 \sqrt{x}}\right)\left[f_{Z}(\sqrt{x})+f_{Z}(-\sqrt{x})\right] u(x)
$$

This formula is valid no matter what the density of Z is. If you plug in the $\operatorname{Gaussian}(0,1)$ density

$$
f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} \exp \left(-z^{2} / 2\right)
$$

you see that

$$
f_{X}(x)=\left(\frac{\exp (-x / 2)}{\sqrt{2 \pi x}}\right) u(x)
$$

Statisticians call this distribution the chi-squared distribution with one degree of freedom. More generally, if you sum up the squares of n independent Gaus$\operatorname{sian}(0,1)$ RV's, the distribution that results is called the chi-squared distribution with n degrees of freedom. The chi-squared distributions are important in variance estimation. I may talk about these distributions in the "statistics" segment of the course, which is what is coming up next in 3025 after Chapters 4-5.
(c) If you study Example 2 of Recitation 6, you get some hints on what to do. The answer is
$\mathrm{z}=$ sqrt (2) $* \operatorname{erfinv}(2 * u-1)$;
For more details, notice that from Example 4 of Recitation 3 we have, for a standard Gaussian Z :

$$
F_{Z}(z)=P(Z \leq z)=(1 / 2) * \operatorname{erf}(z / \sqrt{2})+(1 / 2)
$$

Therefore, the transformation is

$$
U=F_{Z}(Z)=(1 / 2) * \operatorname{erf}(Z)+1 / 2
$$

Solving for Z in terms of U :

$$
Z=\sqrt{2} \operatorname{erfinv}(2 U-1)
$$

Solution to Problem 3.

(a) The joint PMF table is

$$
\begin{aligned}
& Y=1 \\
& X=1 \\
& X=1 \\
& X=2 \\
& X=4
\end{aligned}\left(\begin{array}{cc}
1 / 28 & 3 / 28 \\
2 / 28 & 6 / 28 \\
4 / 28 & 12 / 28
\end{array}\right)
$$

So:

$$
\begin{gathered}
P(X>Y)=P^{X, Y}(2,1)+P^{X, Y}(4,1)+P^{X, Y}(4,3)=18 / 28 . \\
P(X=Y)=P^{X, Y}(1,1)=1 / 28 \\
P(X<Y)=1-P(X=Y)-18 / 28=9 / 28
\end{gathered}
$$

(b) The $P^{X}(x)$'s are the row sums:

$$
P^{X}(1)=4 / 28, \quad P^{X}(2)=8 / 28, \quad P^{X}(4)=16 / 28
$$

The $P^{Y}(y)$'s are the col sums:

$$
P^{Y}(1)=7 / 28, \quad P^{Y}(3)=21 / 28
$$

(c) Put the row sums and col sums as headers in the array:
$1 / 4$
$1 / 7$
$2 / 7$
$4 / 7$$\left(\begin{array}{cc}1 / 28 & 3 / 28 \\ 2 / 28 & 6 / 28 \\ 4 / 28 & 12 / 28\end{array}\right)$

Each of the 6 entries is the product of the row and col header for that entry. Conclusion: X, Y are independent. Alternately, observe that the 6 points where the joint PMF is positive form a Cartesian product set and the joint PMF factors over this set as a function of $x(x / 28)$ alone times a function of y alone (y). Therefore, independence must hold.

Solution to Problem 4.

(a) Let R be the region where the joint density is positive.

$$
\iint_{R}\left(y^{2}-x^{2}\right) e^{-y} d x d y=\int_{0}^{\infty} \int_{-y}^{y}\left(y^{2}-x^{2}\right) e^{-y} d x d y=8
$$

Therefore, $C=1 / 8$.
(b) For $y>0$,

$$
f_{Y}(y)=\int_{-y}^{y}(1 / 8)\left(y^{2}-x^{2}\right) e^{-y} d x=(1 / 6) y^{3} e^{-y}
$$

So,

$$
f_{Y}(y)=(1 / 6) y^{3} e^{-y} u(y)
$$

For all x on the real line,

$$
f_{X}(x)=\int_{|x|}^{\infty}(1 / 8)\left(y^{2}-x^{2}\right) e^{-y} d y=(1 / 4)(1+|x|) e^{-|x|}
$$

(c)

$$
P(|X| \leq Y / 2)=\int_{0}^{\infty} \int_{-y / 2}^{y / 2}(1 / 8)\left(y^{2}-x^{2}\right) d x d y=11 / 16
$$

