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Lecture 26

Statistics Part 1

We are now entering the \statistics" part of EE 3025. During the next few lectures, we will examine
some selected topics from Chapters 6,7, and 9 having to do with statistics. As we indicated in our
\Preview" at the end of Lecture 25, our �rst task will be coverage of the CLT, LLN, and con�dence
interval design.

26.1 Examples of Statistics

Let X1;X2; � � � ;Xn be a random sample of size n from a sampling distribution which has mean
� and variance �2. A statistic is any RV which is a function of this random sample. When you
perform your experiment, the observed value for a statistic must be computable from the observed
values of X1;X2; � � � ;Xn; in particular, a statistic cannot depend on any unknown parameters.

Examples of Statistics

� The sum X1 +X2 + � � � +Xn of the random sample values is a statistic called Sn:

Sn
�
= X1 +X2 +X3 + � � �+Xn:

� The average of the Xi's is a statistic called the sample mean. It is denoted by �Xn (when
we want to make clear that the sample size is n) or �X (when the sample size is clear). It is
de�ned by:

�Xn = �X
�
=

X1 +X2 + � � �+Xn

n
:

� The sample variance is a statistic. It is de�ned by

Pn
i=1(Xi � �X)2

n� 1
: (26.1)

1
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For large n, this is roughly the same thing asPn
i=1(Xi � �X)2

n

We will explain later why statisticians like to divide by n� 1 instead of n when de�ning the
sample variance.

� If the mean � is known, then Pn
i=1(Xi � �)2

n
(26.2)

is a legitimate statistic.

For the present, our focus is on the statistics Sn and �Xn. The statistic Sn is important because
of its presence in the statement of the central limit theorem. The sample mean statistic �Xn is
important because it can be used to estimate the mean � when � is unknown.

A bit later, I will talk about the statistics (26.1) and (26.2), which are used to estimate the
variance �2.

26.2 Mean and Variance of Sn and �Xn

Useful Result

(a): The statistic Sn has mean and variance as follows:

E[Sn] = n�; V ar(Sn) = n�2:

(b): The sample mean �Xn has mean and variance as follows:

E[ �Xn] = �; V ar( �Xn) =
�2

n
:

Proof of (a). You can always take the expected value of a sum term by term:

E[Sn] = E[
nX
i=1

Xi] =
nX
i=1

E[Xi] =
nX
i=1

� = n�:

In general, you cannot take the variance of a sum term by term. However, if the terms in the sum
are independent, then we know that you can take the variance term by term. The terms Xi in the
random sample X1;X2; � � � ;Xn are independent by de�nition. Therefore,

V ar[Sn] = V ar[
nX
i=1

Xi] =
nX
i=1

V ar[Xi] =
nX
i=1

�2 = n�2:
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Proof of (b). We can easily derive the mean and variance of the sample mean �Xn from the
mean and variance of Sn, because the sample mean is a scalar multiple of Sn, and we know what
happens to mean and variance when we take a scalar multiple:

E[ �Xn] = E[Sn=n] = (1=n)E[Sn] = (1=n)(n�) = �:

V ar[ �Xn] = V ar[Sn=n] = (1=n)2V ar(Sn) = (1=n2)(n�2) = �2=n

(Recall that when you pull a scalar out of a variance operator, you have to square the scalar.)

Remarks

(a): If a RV Y has mean �Y and variance �2Y , recall from Chapters 2-3 that the RV

Y � �Y
�Y

has mean 0 and variance 1. If we set Y = Sn, then we conclude that the \normalized sum"

Sn � n�

�
p
n

(26.3)

has mean 0 and variance 1. If we set Y = �Xn, then we conclude that

p
n( �Xn � �)

�
(26.4)

has mean 0 and variance 1.

(b): Actually, the two expressions (26.3) and (26.4) are equal to one another:

Sn � n�

�
p
n

=
(Sn � n�)=n

(�
p
n)=n

=

p
n( �Xn � �)

�
:

(c): By de�nition of variance,
E[( �Xn �E[ �Xn])

2] = V ar( �Xn):

Plugging in what the mean and variance of �Xn are, we conclude that

E[( �Xn � �)2] =
�2

n
: (26.5)

Equation (26.5) is important for the following reason: Suppose we want to use the sample
mean �Xn to estimate � when � is unknown. As we select random samples from our sampling
distribution on trial after trial and compute the di�erent sample mean values, we will see that
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�Xn will uctuate on either side of �, which is in a �xed position on the real line. The quantity
E[( �Xn��)2] quanti�es how big these uctuations can be, on average, in a mean-square sense.
(You can average up the squares of the di�erences between the observed values of �Xn and
� over a large number of trials; this will be approximately what E[( �Xn � �)2] is.) Notice
from (26.5) that E[( �Xn � �)2] is getting smaller and smaller as the sample size n increases;
since �2=n approaches zero as n goes to in�nity, we can �x a sample size n so large that
E[( �Xn � �)2] will be smaller than whatever preset positive quantity you want. In this way,
you see that formula (26.5) tells us that the sample mean �Xn becomes a better and better
estimator of � the larger we take the sample size n.

26.3 Probabilistic Behavior of Sn, �Xn: the CLT

We want to know what we can say about the probability distribution of the quantities

Sn � n�

�
p
n

=

p
n( �Xn � �)

�
: (26.6)

First, we investigate this question for a Gaussian sampling distribution and then we investigate
this question for a nonGaussian sampling distribution.

26.3.1 Case of Gaussian sampling distribution

In this case, we know that Sn is Gaussian. (We proved earlier using moment generating function
techniques that the sum of independent Gaussian RV's is also Gaussian.) If you translate and/or
scale a Gaussian RV, you get another Gaussian RV. (We know this from the Chapter 2-3 material.)

We immediately conclude that the quantities (26.6) are both Gaussian(0; 1) RV's (i.e., standard
Gaussian RV's). Therefore, we can write

P

�
a � Sn � n�

�
p
n

� b

�
=

Z b

a

�
1p
2�

�
exp(�z2=2)dz

P

"
a �

p
n( �Xn � �)

�
� b

#
=

Z b

a

�
1p
2�

�
exp(�z2=2)dz

These equations are true for every sample size n. Doing some algebra on the left side of the second
equation, you can re-write the second equation as

P

�
�+

a�p
n
� �Xn � �+

b�p
n

�
=

Z b

a

�
1p
2�

�
exp(�z2=2)dz
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26.3.2 Case of NonGaussian sampling distribution

We are now sampling from a nonGaussian distribution. In this case, the central limit theorem
(CLT) can be applied. (See Theorem 6.14 on page 258 for a staterment of the CLT.) Roughly
speaking, the CLT tells us that the random quantities (26.6) have approximately a Gaussian(0; 1)
distribution if n is large:

Sn � n�

�
p
n

� Gaussian(0; 1); n large

p
n( �Xn � �)

�
� Gaussian(0; 1); n large

This allows us to say that for large n, the probability statements given in Section 26.3.1 are
approximately true, that is:

P

�
a � Sn � n�

�
p
n

� b

�
�

Z b

a

�
1p
2�

�
exp(�z2=2)dz

P

"
a �

p
n( �Xn � �)

�
� b

#
�

Z b

a

�
1p
2�

�
exp(�z2=2)dz

P

�
�+

a�p
n
� �Xn � �+

b�p
n

�
�

Z b

a

�
1p
2�

�
exp(�z2=2)dz

More precisely, as n!1, the probabilities on the left become Gaussian probabilities in the limit:

lim
n!1P

�
a � Sn � n�

�
p
n

� b

�
=

Z b

a

�
1p
2�

�
exp(�z2=2)dz

lim
n!1P

"
a �

p
n( �Xn � �)

�
� b

#
=

Z b

a

�
1p
2�

�
exp(�z2=2)dz

lim
n!1P

�
�+

a�p
n
� �Xn � �+

b�p
n

�
=

Z b

a

�
1p
2�

�
exp(�z2=2)dz

A completely general proof of the CLT (which would work for every single possible sampling
distribution) is somewhat tricky. Instead, in a later lecture, I will prove a special case of the CLT
for an easily handled type of sampling distribution. You should (hopefully) �nd this proof partially
convincing concerning why the CLT is true. Also, the reader can refer to Recitation 9 Matlab
demos illustrating the CLT for various sampling distributions.

26.4 LLN as special case of CLT

The law of large numbers (LLN) says that, regardless of the sampling distribution, the following
limiting relation is true:

lim
n!1P [�� � � �Xn � �+ �] = 1; for every � > 0: (26.7)
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The purpose of this section is to show you that statement (26.7) is true using the CLT.
First, let us discuss a little bit the type of converence exhibited in statement (26.7). Statisticians

call this type of convergence stochastic convergence. More generally, if we have an in�nite sequence
of RV's

Y1; Y2; Y3; � � � ;
then we say that this sequence converges stochastically to a parameter � if

lim
n!1P [� � � � Yn � � + �] = 1; for every � > 0:

With this terminology, statement (26.7) is then the same thing as saying that the sample mean
converges stochastically to � (in the limit as the sample size becomes in�nite).

Proof of (26.7). Let the positive number � in statement (26.7) be chosen arbitrarily. Let C be
any positive real number. If the sample size n is large enough, then

� � C�p
n
;

from which it follows that the event

�
�� � � �Xn � �+ �

	
(26.8)

contains the event �
�� C�p

n
� �Xn � �+

C�p
n

�
: (26.9)

We learned in Chapter 1 that if an event E contains an event F , then P (E) � P (F ). Therefore,
the probability of event (26.8) is � the probability of event (26.9) if n is large enough. The CLT
tells us that the probability of event (26.9) converges to

Z C

�C
f(z)dz;

where f(z) is the standard Gaussian PDF. Therefore,

lim
n!1P [�� � � �Xn � �+ �] �

Z C

�C
f(z)dz (26.10)

for every C > 0. As we make C extremely large, the right side of (26.10) becomes closer and closer
to 1. Therefore, the limit on the side side of (26.10) has to be 1.
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26.5 Con�dence Interval Design: the Gaussian Case

Let the sampling distribution be Gaussian. Suppose the mean � of our sampling distribution is
unknown. Choose � to be any positive real number that you want. (You can preset � to be as close
to zero as you want, such as � = 0:1 or � = 0:01.) Choose p to be any positive real number less
than 1 that you want. (Typical choices of p might be p = 0:90 or p = 0:95.) Suppose you have
found a sample siuze n for which

P
�
�Xn � � � � � �Xn + �

�
= p:

Then we call the interval of real numbers

[ �Xn � �; �Xn + �] (26.11)

a 100p% con�dence interval for �. For example, if p = 0:90, we would call the interval (26.11) a
90% con�dence interval for �, meaning that if we re-compute the sample mean �Xn on trial after
trial for a large number of trials, approximately 90% of these trials will yield interval (26.11) which
contains the unknown �.

Useful Result: If we are sampling from a Gaussian distribution, then for every possible sample
size n, �

�Xn � 1:645�p
n

; �Xn +
1:645�p

n

�

is a 90% con�dence interval for �. We can state this result more compactly by saying that
�Xn � 1:645�p

n
are the endpoints of a 90% con�dence interval for �.

Proof of Result. We must �nd the positive constant C such that

P

�
�Xn � C�p

n
� � � �Xn � C�p

n

�
= 0:90:

We can re-write the left side as

P

�
�� C�p

n
� �Xn � �� C�p

n

�

We know from our earlier work with the Gaussian sampling distribution that this probability does
not depend on �, �, or n. Therefore, this probability must be

P [�C � Z � C];

where Z is a standard Gaussian RV. (This is what you get when n = 1, � = 0, and � = 1.) We
have

P [�C � Z � C] = �(C)� �(�C) = 0:90;
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where � is the standard Gaussian CDF. Use the fact that

�(�C) = 1� �(C):

Simplifying, you conclude that
�(C) = 0:95;

and then from table on page 123 of your textbook you conclude that C = 1:645.

Exercise. By a similar technique, prove that for all n,

�Xn � 1:96�p
n

are the endpoints of a 95% con�dence interval for �, when you are sampling from a Gaussian
distribution.

26.6 Multivariate Density Example

Occasionally I will pause in our statistics coverage to go back to Chapter 5 and further our study
of multivariate distributions. Let us consider the following example. Let X1;X2;X3 be jointly
continuously distributed RV's with multivariate density

f(x1; x2; x3) = 1; (x1; x2; x3) 2 R (zero elsewhere);

where R is the unit cube

R = f(x1; x2; x3) : 0 � x1 � 1; 0 � x2 � 1; 0 � x3 � 1g:

Let's answer the following:

(a): Compute P [X2
1 +X2

2 +X2
3 � 1].

(b): Compute P [X1 +X2 +X3 � 1].

(c): Are X1;X2;X3 independent?

Solution to (a). Let S be the three-dimensional region

S = f(x1; x2; x3) : x21 + x22 + x23 � 1g \R:

Then

P [X2
1 +X2

2 +X2
3 � 1] =

ZZZ
S
(1)dx1dx2dx3 = volume(S):
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It is not too hard to see that S is one-eighth of a sphere of radius one. The volume of a sphere of
radius r is 4

3
�r3. Plugging in r = 1 and taking 1=8 of this, we conclude that

P [X2
1 +X2

2 +X2
3 � 1] = �=6:

Solution to (b). Let S be the three-dimensional region

S = f(x1; x2; x3) : x1 + x2 + x3 � 1g \R:

Similarly to part(a), the probability we want is the volume of S. The required triple integral would
extend over that part of the cube R lying below the plane x1 + x2 + x3 = 1. One can see that
this is the following, after maybe referring to your calculus book for some setups of limits on triple
integrals over 3-D regions, in case you need to refresh your memory about how this is done:

volume(S) =

Z 1

0

Z 1�x1

0

Z 1�x1�x2

0

dx3dx2dx1

The following Matlab script accomplishes this integration task:

syms x1 x2 x3

int(int(int(1,x3,0,1-x1-x2),x2,0,1-x1),0,1)

ans =

1/6

We conclude that
P [X1 +X2 +X3 � 1] = 1=6:

Solution to (c). Independence means that

f(x1; x2; x3) = fX1
(x1)fX2

(x2)fX3
(x3):

To �nd the marginal densities, you integrate out all the remaining variables from the multivariate
density:

fX1
(x1) =

Z 1

�1

Z 1

�1
f(x1; x2; x3)dx2dx3

fX2
(x2) =

Z 1

�1

Z 1

�1
f(x1; x2; x3)dx1dx3

fX3
(x3) =

Z 1

�1

Z 1

�1
f(x1; x2; x3)dx1dx2
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You can just �nd one of these and then use symmetry to obtain the other two. You get

fX1
(x1) = 1; 0 � x1 � 1 (zero elsewhere)

fX2
(x2) = 1; 0 � x2 � 1 (zero elsewhere)

fX3
(x3) = 1; 0 � x3 � 1 (zero elsewhere)

The product of these is clearly f(x1; x2; x3). The Xi's are indeed independent.

Remark. In terms of our statistics coverage, we can say that the RV's X1;X2;X3 of this
example form a random sample of size 3 from the Uniform(0; 1) distribution.
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Statistics Part 2

27.1 Chebyshev's Inequality

You can �nd material on Chebyshev's Inequality on page 278 of your textbook. Chebyshev's
inequality for any RV Y says that

P (�Y � k�Y < Y < �Y + k�Y ) � 1� 1

k2
; (27.1)

where k is any real number � 1. I will give the simple proof of Chebyshev's Inequality at the end
of this section.

To illustrate Chebyshev's Inequality, suppose we take k = 2. Then Chebyshev's inequality says
that

P (�Y � 2�Y < Y < �Y + 2�Y ) � 3=4 = 0:75:

Thus, no matter what the random variable, you are guaranteed to be within two standard deviations
of the mean at least 75% of the time. Or, if k = 3, Chebyshev's inequality says

P (�Y � 3�Y < Y < �Y + 3�Y ) � 8=9 = 0:889:

Thus, no matter what the random variable, you are guaranteed to be within three standard devia-
tions of the mean at least 88% of the time.

Since the Chebyshev bound is valid for ALL RV's, the actual probability may be somewhat
bigger than the Chebyshev bound for certain RV's (that is, the Chebyshev bound will not be very
tight).

Example 27.1. Let us see what Chebyshev's Inequality says when the RV Y is Uniform(0,1)
and k = 1:5. We have (see Appendix A if necessary):

�Y = 1=2

11
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�Y =
q
1=12

�Y � (1:5)�Y = 0:0670

�Y + (1:5)�Y = 0:9330

The exact probability of being within 1:5 standard deviations of the mean is

P [�Y � (1:5)�Y < Y < �Y + (1:5)�Y ] = P [:0670 � Y � 0:9330] = 0:8660:

The Chebyshev lower bound is

1� 1

k2
= 1� (1:5)�2 = 5=9 = 0:5556:

Notice that 0:8660 is considerably bigger than 0:5556. Therefore in this case the Chebyshev lower
bound is not very tight.

Exercise. For Y Gaussian, compute the exact probability

P [�Y � (1:5)�Y < Y < �Y + (1:5)�Y ]

using page 123 of your textbook and see how close this is to the Chebyshev lower bound 5/9.

Proof of Chebyshev's Inequality. Let us abbreviate �Y as � and abbreviate �Y as �. We start
with the statement that

P [jY � �j � k�] =

Z ��k�

�1
fY (y)dy +

Z 1

�+k�
fY (y)dy

In both integrals on the right, the inequality

k2�2 � (y � �)2

holds for all y in the range of integration. Therefore

Z ��k�

�1
fY (y)dy = k�2��2

Z ��k�

�1
k2�2fY (y)dy � k�2��2

Z ��k�

�1
(y � �)2fY (y)dyZ 1

�+k�
fY (y)dy = k�2��2

Z 1

�+k�
k2�2fY (y)dy � k�2��2

Z 1

�+k�
(y � �)2fY (y)dy

Adding these two inequalities together, we obtain

P [jY � �j � k�] � k�2��2
Z ��k�

�1
(y � �)2fY (y)dy + k�2��2

Z 1

�+k�
(y � �)2fY (y)dy

� k�2��2
Z 1

�1
(y � �)2fY (y)dy = k�2��2�2 = k�2
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Taking the complement of the event fjY � �j � k�g, we obtain the event

f�� k� < Y < �+ k�g (27.2)

which must have probabilitity at least as big as 1� (1=k)2. The event

f�� k� � Y � �+ k�g
is even bigger than the event (27.2), and so it must have probability which is also at least as big as
1� (1=k)2. In other words, we have proved (27.1).

27.2 Completion of Con�dence Interval Design

In Section 26.5, we considered Con�dence Interval Design for sampling from a Gaussian distribution.
In this section, we complete our coverage of Con�dence Interval Design by:

� explaining how to design con�dence intervals when you sample from a nonGaussian distribu-
tion;

� showing how to determine how many samples n are needed for your sample of size n if you
want a certain type of con�dence interval, both in the case of a Gaussian smpling distribution
and in the case of a nonGaussian sampling distribution.

27.2.1 NonGaussian Con�dence Interval Design

As in Lecture 26, suppose you have X1;X2; � � � ;Xn, a sample of size n from your sampling dis-
tribution, where this distribution has unknown mean � and known variance �2. If the sampling
distribution is Gaussian, we showed in Section 26.5 how to �nd a constant k such that�

�Xn � k�p
n
; �Xn +

k�p
n

�
(27.3)

is a 100p% con�dence interval for �, for whatever p you want to set out in advance.
We now assume that the sampling distribution is nonGaussian. We again have to explain how

to �nd k so that we obtain a con�dence interval of the form (27.3) with a desired level of con�dence.
Suppose we let Y be equal to the sample mean �Xn in Chebyshev's Inequality (27.1):

P
�
� �Xn

� k� �Xn

� �Xn � � �Xn

+ k� �Xn

� � 1� 1

k2
:

Substituting

� �Xn

= �

� �Xn

=
�p
n
;



LECTURE 27. STATISTICS PART 2 14

we see that

P

�
�� k�p

n
� �Xn � �+

k�p
n

�
� 1� 1

k2
:

The event on the left side is unchanged if you exchange � and �Xn, which gives us

P

�
�Xn � k�p

n
� � � �Xn +

k�p
n

�
� 1� 1

k2
:

We can now make the following immediate conclusion.

Conclusion: For any sampling distribution, the con�dence interval (27.3) has percentage level of
con�dence at least 100(1 � 1

k2 )%.

Example 27.2. Suppose we want at least a 90% con�dence intervals for �. Then, by the
Conclusion, we can choose k in the con�dence interval (27.3) by solving the equation

100

�
1� 1

k2

�
= 90;

which gives
k =

p
10 = 3:1623;

to four decimal places. We conclude that no matter what distribution we sample from,�
�Xn � 3:1623�p

n
; �Xn +

3:1623�p
n

�
(27.4)

is at least a 90% con�dence interval for �. Compare this with our earlier result for sampling from
a Gaussian distribution. In this case, we determined that�

�Xn � 1:645�p
n

; �Xn +
1:645�p

n

�
(27.5)

is a 90% con�dence interval for �. Notice that the nonGaussian con�dence interval (27.4) is a bit
wider than Gaussian con�dence interval (27.5), which is less desirable since for the same level of
con�dence, a shorter con�dence interval would be preferable to a longer one. This is the price we
pay for our ignorance as to what type of distribution we are sampling from.

Exercise. For an arbitrary sampling distribution, prove that�
�Xn � 4:4721�p

n
; �Xn +

4:4721�p
n

�

is at least a 95% con�dence interval for �.
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27.2.2 How Many Samples?

In our preceding Con�dence Interval Design discussions, we only concentrated on the percentage
level of con�dence of the con�dence interval to be designed. If we also specify how wide the
con�dence interval should be, then we can pin down how many samples n we need to take in our
random sample in order that the con�dence interval we design will have the desired percentage
level of con�dence and the desired width. The following examples illustrate this.

Example 27.3. We sample from a Gaussian distribution with unknown mean � and � = 1. We
want a 90% con�dence interval �

�Xn � �; �Xn + �
�

in which � = 0:01: Let us determine how big a sample size n we need in order to accomplish these
design goals. First of all, we know that the 90% con�dence interval for sampling from Gaussian
distribution takes the form �

�Xn � 1:645�p
n

; �Xn +
1:645�p

n

�

So, we set
1:645�p

n
= � = 0:01;

and solve for n with � = 1. You will see that n will be about 27600. Thus, we need sample size
about n = 27600 to achieve our goal in con�dence interval design.

Example 27.4. Now, we sample from a nonGaussian distribution with unknown mean � and
� = 1. We want a 90% con�dence interval

�
�Xn � �; �Xn + �

�
in which � = 0:01. From Example 27.2, we know that k =

p
10 is the proper choice of k to determine

the desired con�dence level of at least 90%. We then �nd n by solving

k�p
n
=

p
10�p
n

= � = 0:01

with � = 1. You see that n = 100000 is the sample size that is necessary. Note that this is a bit
more than the 27600 samples needed for the Gaussian con�dence interval. We have to take many
more samples as a penalty for our ignorance concerning what the sampling distribution is.

Example 27.5. Suppose we now sample from a binary probability distribution with unknown
mean �. This binary distribution assigns probability p and 1 � p to the binary values 1 and 0,
respectively, where p is an unknown paramter. The mean � of this distribution is then seen to be
p:

� = p � 1 + (1� p) � 0 = p:
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We leave it as an exercise for the reader to show that the standard deviation � of this distribution
is given by

� =
q
p(1� p):

Let us try to �nd how many samples n we need to obtain a 90% con�dence interval

[ �Xn � �; �Xn + �] (27.6)

with � = 0:01: The tricky part of this problem is that � depends on p and is therefore unknown.
So the con�dence interval cannot be of the form�

�Xn � k�p
n
; �Xn +

k�p
n

�
(27.7)

because the endpoints of this interval depend on the unknown �. Here is how we can get around
this diÆculty. First, as in Examples 27.4. and 27.2, we can argue that if k =

p
10, then the interval

(27.7) contains � = p with probability at least 0:90. The resulting interval (27.7) varies with p and
one really has in�nitely many such intervals, one for each value of p. At this point, one can take the
biggest of these intervals as the interval (27.6). This will tell us what n is and will also guarantee
at least 90% con�dence level (the biggest of the intervals has con�dence level at least as great as
any of the separate intervals|increasing the size of an interval makes the con�dence level go up).
Let us now go ahead and perform this procedure: plugging k =

p
10 in (27.7), you get the interval"

�Xn �
p
10
p
p(1� p)p
n

; �Xn +

p
10
p
p(1� p)p
n

#
; (27.8)

which is at least a 90% interval, although it depends on p. The biggest of these intervals, as p varies
from p = 0 to p = 1, is for p = 1=2, because the max value of

p
p(1� p) takes place at p = 1=2.

We set p = 1=2 in (27.8) to see that this biggest interval is"
�Xn �

p
10
p
1=4p
n

; �Xn +

p
10
p
1=4p
n

#

We want this interval to be the con�dence interval (27.6), so we set

� =

p
10
p
1=4p
n

= 0:01;

obtaining n = 25000 as the necessary number of samples. Our conclusion is that

[ �Xn � 0:01; �X + 0:01]

is at least a 90% con�dence interval for �, if n = 25000, that is,

P [ �Xn � 0:01 < � < �Xn + 0:01] � 0:90

for n = 25000, regardless of the value of � = p.
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27.3 Multivariate Gaussian density example

Let RV's X1;X2;X3 have the multivariate Gaussian density

f(x1; x2; x3) = C exp
h
�0:5(x1 x2 x3)C�1

X (x1 x2 x3)
T
i
; (27.9)

where the covariance matrix CX of the Xi's is

CX =

0
B@ 2 1 1

1 2 1
1 1 2

1
CA :

Let us work out the following:

(a): Find fX1;X3
(x1; x3).

(b): Find fX2
(x2)

Solution to (a). The hard way to �nd the answer would be to do the integral

fX1;X3
(x1; x3) =

Z 1

�1
f(x1; x2; x3)dx2:

Fortunately, we can use a property of multivariate Gaussian distributions to obtain the answer in
a much simpler manner. This property states that any subset of multivariate Gaussian RV's is
also multivariate Gaussian. Therefore, X1;X3 automatically have a bivariate Gaussian density. To
express this density, we need the means of X1;X3 and the covariance matrix for X1;X3. From the
form of f(x1; x2; x3) in (27.9), it is clear that the means of X1;X2;X3 are all zero. (If one of these
means were nonzero, there would be at least one linear term in the xi's in the exponent on the
right side of (27.9), but there are only quadratic terms.) Therefore, X1 and X3 both have mean 0.
The covariance matrix for X1;X3 is the 2� 2 matrix consisting of the four corner elements of CX ,
namely, the matrix  

2 1
1 2

!
:

The inverse of this matrix is  
2=3 �1=3

�1=3 2=3

!
:

We now form the triple product

(x1 x3)

 
2=3 �1=3

�1=3 2=3

!
(x1 x3)

T ;
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which multiplies out as
(2=3)x21 + (2=3)x23 � (2=3)x1x3:

If we multiply this by �1=2, we obtain the exponent of the fX1;X3
(x1; x3) density:

fX1;X3
(x1; x3) = C 0 exp[�0:5f(2=3)x21 + (2=3)x23 � (2=3)x1x3g]:

= C 0 exp[�(x21 + x23 � x1x3)=3]

From page 191 of your textbook, the constant C 0 is given by

C 0 =
1

2��X1
�X3

q
1� �2X1;X3

=
1

2�
p
3
:

(Obviously, �X1
= �X3

= 2. We leave it to the reader to show that �X1;X3
= 1=2.)

Solution to (b). X2 must be Gaussian. Its mean is zero. Its variance is 2 (the middle element
of CX). Therefore, its density (from App A) is

fX2
(x2) =

1p
2�
p
2
exp

 
�x

2
2

4

!
:

This is much easier than doing the integral

fX3
(x3) =

Z 1

�1

Z 1

�1
f(x1; x2; x3)dx1dx3:



Lecture 28

Statistics Part 3

28.1 Con�dence Interval for P (E)

Suppose we have an event E associated with a random experiment whose probability P (E) is
unknown. Going back to the beginnings of EE 3025, we estimated P (E) empirically as follows:

� Perform the experiment n times (independent trials).

� Of these n trials, let nE be the total number of these trials on which E occurred.

� Use the \relative frequency" nE=n as an estimate for P (E).

It stands to reason that we may be able to form a con�dence interval for P (E) of the form

�
nE
n
� �;

nE
n
� �

�
: (28.1)

We will want a certain level of con�dence for this interval, namely, for some preselected � strictly
between 0 and 1, we will want to ensure that

P

�
nE
n
� � � P (E) � nE

n
+ �

�
� �: (28.2)

We may state our con�dence interval design problem as follows:

Conf Int Design Problem: Given � and �, �nd a number of samples that will ensure that in-
equality (28.2) is true.

First, I state how you �nd n in order to solve this problem. Then, I explain why my solution is
valid.

19
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Solution to Conf Int Design Problem: First, �nd k so that

1� 1

k2
= �: (28.3)

Then, solve the following equation for n:

k

2
p
n
= �: (28.4)

If n is a positive integer, this is the number of trials you take to form the con�dence interval
(28.2). If not, you round up to the smallest integer greater than or equal to the solution to
(28.4).

Example 28.1. Let us �gure out how many trials n will be enough so that (28.1) will be a
90% con�dence con�dence interval with � = 0:01. Then, � = 0:90: Solving (28.3) for k, we obtain
k =

p
10. Solving (28.4) with � = 0:01, we see that the number of trials n to be used in our

con�dence interval is
n = 25000:

The design of our con�dence interval is now complete. In other words, if you repeatedly take 25000
trials and compute the endpoints of the con�dence interval (28.1), you will �nd that in the long
run at least 90% of these con�dence intervals will contain P (E), no matter what the value of P (E)
actually is.

Example 28.2. Figure out how many trials n will be enough so that (28.1) will be a 95%
con�dence con�dence interval with � = 0:01.

Proof that our design method works. Suppose you take a random sample of size n

X1;X2; � � � ;Xn

from the binary probability distribution which assigns probability p = P (E) to the binary value 1
and then it is automatically true that probability 1� p is assigned to the binary value 0. Then, we
can regard the sample mean �Xn of this random sample as coinciding with the relative frequency
nE=n:

nE
n

=
X1 +X2 + � � � +Xn

n
= �Xn: (28.5)

(You can regard each Xi as taking the value 1 precisely when event E occurs, so that the sum of
the Xi's is therefore nE, the total number of times E occurs.) The mean � of our binary prob dist
is � = p = P (E). Using the method of Example 27.5, one �nds an interval of the form

�
�Xn � k�p

n
; �Xn +

k�p
n

�
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so that

P

�
�Xn � k�p

n
� � � �Xn +

k�p
n

�
� �; (28.6)

where � is the standard deviation of our binary prob dist, given by

� =
q
p(1� p):

Using Chebyshev's Inequality, the k needed for (28.6) to be true is found by solving equation (28.3).
Plugging this k value into (28.6) and also plugging in the � value, we've shown (using (28.5)) that
the following is true:

P =

"
nE
n
� k

p
p(1� p)p
n

� P (E) � nE
n

+
k
p
p(1� p)p
n

#
� �

We need to �nd two endpoints not depending on p = P (E). If we replace p(1 � p) in the two
endpoints by the biggest it can be (namely, 1=4), we get a bigger interval for which the preceding
prob statement is still true. Our conclusion is that the following is true for k satisfying (28.3):

P

�
nE
n
� k

2
p
n
� P (E) � nE

n
+

k

2
p
n

�
� �

Solving the equation (28.4), we obtain the necessary value of n for our con�dence interval (28.1).

28.2 Application to Hypothesis Testing

(Note: You are not responsible for this section on EE 3025 Exam 2.)

Chapter 8 of your textbook is on hypothesis testing. Although hypothesis testing is very
important, there was no time to cover Chapter 8 in EE 3025. However, it is interesting to note that
the simplest hypothesis testing problem is solvable using the con�dence interval approach. This
section is devoted to showing you this.

Suppose you have a probability distribution with unknown mean � and known variance �2.
To make the problem of estimating � simpler, suppose you do know that there are exactly two
possibilities for �, namely, � can either be equal to a known value �0 or else � can be equal to a
known value �1 (let us assume that �1 > �0). Statisticians would state these two possibilities as
two \hypotheses": Either the hypothesis

H0 : � = �0

is true, or else the hypothesis
H1 : � = �1

is true.
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Hypothesis Testing Problem: Based an a random sample of size n from the underlying prob
dist, decide whether hypothesis H0 is true or whether hypothesis H1 is true.

In order to solve the Hypothesis Testing Problem, we need to formulate a decision rule that will
tell us exactly when to decide that H0 is true and when to decide that H1 is true. Here is one
possible decision rule, based on con�dence intervals:

Decision Rule: Suppose you want to make the correct decision at least 90% of the time about
which of the two hypotheses H0;H1 is true, no matter which one is actually true. Set

� =
j�1 � �0j

2
; (28.7)

and �nd the sample size n needed so that

[ �Xn � �; �Xn + �] (28.8)

will be a 90% con�dence interval for �. Take your random sample of size n and compute the
endpoints of your con�dence interval. Make your decision about the hypotheses as follows:

� If your con�dence interval (28.8) contains �1, then decide that hypothesis H1 is true.
(This decision makes sense because if your interval contains �1, it cannot also contain
�0, because of the choice of � in (28.7).)

� If your con�dence interval (28.8) contains �0, then decide that hypothesis H0 is true.
(This decision makes sense because if your interval contains �0, it cannot also contain
�1.)

� If your con�dence interval contains neither �0 nor �1, then you can just make a guess
as to which of the two hypotheses is true.

Discussion. We discuss why the preceding Decision Rule will make the correct decision at least
90% of the time (in the long run as you re-compute your con�dence interval over and over again and
make the resulting repeated decisions). By the fact that the con�dence interval is a 90% con�dence
interval, it will contain the actual value of � at least 90% of the time in the long run. But � can
only be �0 or �1 and nothing else. If � = �0 is true, then since the con�dence interval contains �
at least 90% of the time, it will contain �0 at least 90% of the time, and on such occasions, the
decision rule will always select hypothesis H0 as the true hypothesis (which is the correct decision).
On the other hand, if � = �1 is true, then since the con�dence interval contains � at least 90% of
the time, it will contain �1 at least 90% of the time, and on such occasions, the decision rule will
always select hypothesis H1 as the true hypothesis (which is the correct decision). We conclude
that the correct decision will be made at least 90% of the time as to which hypothesis is true, no
matter which of the two hypotheses is actually true. (For those occasions in which the con�dence
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interval contains neither �0 nor �1, the decision rule might guess that the wrong hypothesis is true,
but this eventuality can only occur less than 10% of the time.)

Remark. If you want your decision rule for the hypothesis testing problem to be correct more
than 90% of the time, then you could design your con�dence interval to be a 95% con�dence
interval or a 97.5% con�dence interval, or however close to 100% con�dence level that you want.
The percentage level of con�dence of your con�dence interval determines the percentage of time
that your decision rule will be correct.

28.3 Linear Transformation of Multivariate Densities

(Note: You are not responsible for this section on EE 3025 Exam 2.)

Suppose you have jointly continuous RV's X1;X2; � � � ;Xn. Then they have a multivariate
density

f(x1; x2; � � � ; xn)
Suppose you linearly transform these \old RV's" to get \new RV's" Y1; Y2; � � � ; Yn. We can express
the linear transformation in matrix format as2

66664
Y1
Y2
...
Yn

3
77775 = A

2
66664
X1

X2

...
Xn

3
77775 ;

where A is an n� n invertible matrix with constant entries. The new RV's have a joint density

g(y1; y2; � � � ; yn):

The question we want to consider in this section is how to compute the density g(y1; y2; � � � ; yn)
from the density f(x1; x2; � � � ; xn). Here is a formula for doing this, from Theorem 5.11 (page 223)
of your textbook:

g(y1; y2; � � � ; yn) =
�

1

jdet(A)j
�
f(x1; x2; � � � ; xn); (28.9)

where in the right hand side we substitute for each xj variable in terms of the yi's. I will not prove
formula (28.9) here, because it is a special case of a formula I will give in a future lecture for trans-
forming a multivariate density under a nonlinear transform. Intuitively, however, one can \psych
out" why the new multivariate density would just be a constant multiple of the old multivariate
density (at least in two dimensions): A linear transformation in 2-D transforms parallelograms in
the x1; x2 plane into parallelograms in the y1; y2 plane, where the area of the new parallelogram is
always just a �xed constant multiple of the area of the old parallelogram. In proving formula (28.9)
in 2-D, you would compute multivariate probability over a new region in terms of multivariate
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probability over an old region by approximating the new and old regions as unions of in�nitesi-
mally small new and old parallograms, respectively. The constant scaling factor between the areas
of the corresponding new and old in�nitesimal parallelograms would yield, in the limit, expressions
for the new and old multivariate probs as 2-D integrals with 2-D density function integrands that
are also related by this constant multiple.

Example 28.2. Let X1, X2 be independent RV's. Make the change of variable

Y1 = X1 +X2

Y2 = X2

Let's use formula (28.9) to express fY1;Y2(y1; y2) in terms of fX1;X2
(x1; x2). The coeÆcient matrix

of the transformation is "
1 1
0 1

#
;

which has determinant 1. Also, if you solve for the old variables in terms of the new variables, you
get

X1 = Y1 � Y2

X2 = Y2

We conclude from (28.9) that

fY1;Y2(y1; y2) = (1)fX1;X2
(x1; x2) = fX1;X2

(y1 � y2; y2):

Up to now, I have not used the fact that RV's X1;X2 are independent. If I now use that fact, I
obtain

fY1;Y2(y1; y2) = fX1
(y1 � y2)fX2

(y2):

As a byproduct, let us now �nd the PDF of Y1. We obtain:

fY1(y1) =

Z 1

�1
fX1

(y1 � y2)fX2
(y2)dy2:

The right side of the preceding equation is your old friend the convolution integral from EE 3015.
We conclude that

fY1 = fX1
� fX2

:

In other words, if you sum up two independent RV's X1;X2, the PDF of the sum RV is the
convolution of the separate PDF's of X1 and X2. This is a result that we have been using for some
time. We now see why it is true.

Example 28.3. Suppose X1;X2 have joint density

f(x1; x2) =

�
1

2�
p
3

�
exp[�0:5f(2=3)x21 + (2=3)x22 � (2=3)x1x2g]: (28.10)



LECTURE 28. STATISTICS PART 3 25

(This is the bivariate Gaussian density that appeared toward the end of Section 27.3.) The purpose
of this example is to point out that I can linearly transform the RV's X1;X2 to obtain independent
Gaussian(0,1) RV's Y1; Y2. To do this, I �rst rewrite the exponent in the right side of (28.10) as

exp[�0:5 (x1 x2)
 

2=3 �1=3
�1=3 2=3

!
(x1 x2)

T ]:

To see what linear transformation is needed, we �rst need to �nd the covariance matrix CX of the
Xi's. This is obtained by inverting the 2� 2 matrix that appears in the middle of the exponent:

 
2=3 �1=3

�1=3 2=3

!�1
=

 
2 1
1 2

!
= CX :

Now choose a 2� 2 invertible matrix A so that

ACXA
T =

 
1 0
0 1

!
; (28.11)

the 2�2 identity matrix. There are in�nitely many di�erent Amatrices that will satisfy the equation
(28.11). In a good linear algebra course, you would learn at least one or two good techniques for
�nding a solution. To �nish up, all I need is just one solution. You can easily verify that the
following is a solution:

A =

 
1=
p
2 �1=p2

1=
p
6 1=

p
6

!
:

The change of variable we will make is then"
Y1
Y2

#
= A

"
X1

X2

#
: (28.12)

The reciprocal of the determinant of A is
p
3. Therefore, by formula (28.9), the new joint density

is

fY1;Y2(y1; y2) =
p
3

�
1

2�
p
3

�
exp[�0:5 (x1 x2)C�1

X (x1 x2)
T ]; (28.13)

except that we still have to substitute for the old variables x1; x2 on the right side in terms of the
new variables y1; y2. Solving equation (28.11) for CX , we obtain

CX = A�1(AT )�1;

and then inverting both sides of this equation we obtain

C�1
X = ATA:
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The exponential part on the right side of (28.13) is then

exp[�0:5 (x1 x2)ATA(x1 x2)
T ];

which can be rewritten as
exp[�0:5 f(x1 x2)AT gf(x1 x2)AT gT ];

and then as
exp[�0:5 (y1 y2)(y1 y2)T ];

because from (28.12) we have
(y1 y2) = (x1 x2)A

T :

We conclude that our new joint PDF in simplest form is

fY1;Y2(y1; y2) =

�
1

2�

�
exp[�0:5(y21 + y22)];

which factors as the product of two Gaussian(0,1) PDF's. We have shown that the change of variable
(28.12) converts the old RV's X1;X2 into new RV's Y1; Y2 which are independent Gaussian(0,1)
RV's.

Final Remark. The technique illustrated in the preceding example can be applied to any set
X1;X2; � � � ;Xn of multivariate Gaussian RV's having zero mean. You can linearly transform them
into independent Gaussian(0,1) RV's Y1; Y2; � � � ; Yn if you use the appropriate n � n matrix A to
convert the column vector [X1;X2; � � � ;Xn]

T into the column vector [Y1; Y2; � � � ; Yn]T . Any n � n
matrix A such that

ACXA
T

is the n� n identity matrix will do the trick!



Lecture 29

Statistics Part 4

29.1 Straight Line Regression of the Mean

We start with an instructive example.
Example 29.1. Given X;Y satisfying:

� �X = 0, �Y = 1

� V ar(X) = 2, V ar(Y ) = 4

� �X;Y = 1=2

Assume that there are constants a; b such that

E[Y jX = x] = ax+ b; for all x:

This is called straight line regression of the mean. Use Law of Iterated Expectation to �nd a; b.

Solution.

E[Y ] = E[E[Y jX]] = E[aX + b] = aE[X] + b = b:

Therefore b = 1.

E[XY ] = E[XE[Y jX]] = E[X(aX + 1)] = aE[X2] +E[X] = 2a:

Also,
E[XY ] = Cov(X;Y ) + �X�Y = Cov(X;Y ) = ��X�Y =

p
2:

Therefore,
a =

p
2=2:

Using the Law of Iterated Expectation much as in Example 29.1, one can prove the following.

27
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� If E[Y jX = x] is a straight line function (i.e., of the form ax + b for constants a; b), then it
takes the unique form

E[Y jX = x] = �Y +
�X;Y �Y
�X

(x� �X):

� If E[XjY = y] is a straight line function (i.e., of the form cy + d for constants c; d), then it
takes the unique form

E[XjY = y] = �X +
�X;Y �X
�Y

(y � �Y ):

29.2 Bivariate Gaussian Distribution

We say that random variables X;Y have a joint Gaussian distribution if their joint PDF takes the
form

1

2��x�y
p
1� �2

exp

2
4� 1

2(1� �2)

8<
:
�
x� �x
�x

�2
+

 
y � �y
�y

!2
� 2�

�
x� �x
�x

� 
y � �y
�y

!9=
;
3
5 (29.1)

where �x; �y; �x; �y; � can be any �ve parameter values which satisfy

�1 < �x <1
�1 < �y <1

0 < �x <1
0 < �y <1

�1 < � < 1

Properties of Bivariate Gaussian

We will prove the following properties of the Bivariate Gaussian in Section 29.2.3.

� The marginal distributions are Gaussian:

X � Gaussian(�x; �
2
x)

Y � Gaussian(�y; �
2
y)

� The conditional distributions are Gaussian: The cond dist of X given Y = y is Gaussian with

E[XjY = y] = �x + �(�x=�y)(y � �y) (29.2)

Var[XjY = y] = �2x(1 � �2)
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The cond dist of Y given X = x is Gaussian with

E[Y jX = x] = �y + �(�y=�x)(x� �x)

Var[XjY = y] = �2y(1� �2)

� �x;y = �.

We have seen in the recitations that a Gaussian joint density f(x; y) can be plotted as a surface
z = f(x; y) in an (x; y; z)-coordinate system. Geometrical properties of the surface z = f(x; y) are
related to properties of the joint Gaussian probability distribution. For example, the point in the
(x; y) plane at which the surface z = f(x; y) reaches its maximum is the point (�x; �y). Planes of
the form x = C cut the surface z = f(x; y) in one-dimensional curves which, when scaled properly,
yield the conditional densities of Y given values of X. Planes of the form y = C cut the surface
z = f(x; y) in one-dimensional curves which yield the conditional densities of X given values of Y
when scaled properly. Cross-sections of the surface z = f(x; y) with planes of the form z = C are
ellipses.

29.2.1 E�ect of the parameter �

� The jointly Gaussian random variables X;Y are independent if and only if � = 0. The reader
can see that the joint Gaussian density in (29.1) factors in this case as

"
1p
2��x

exp

 
�(x� �x)

2

2�2x

!# "
1p
2��y

exp

 
�(y � �y)

2

2�2y

!#

If � = 0, and the variances of X and Y are equal, then the surface z = f(x; y) has a
symmetrical bell shape, with the cross sections of the surface parallel to the (x; y)-plane
being circles.

� As � ! �1, the elliptical cross-sections of the surface z = f(x; y) become more and more
eccentric, with the surface z = f(x; y) looking more and more \squashed" along the major
axis of these elliptical cross sections. In the limit when � becomes 1, one has

P [Y = �y + (�y=�x)(X � �x)] = 1;

which means that (X;Y ) is concentrated along a line of positive slope. In the limit when �
becomes �1, then

P [Y = �y � (�y=�x)(X � �x)] = 1;

meaning that (X;Y ) is concentrated along a line of negative slope.
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29.2.2 E�ect of Linear Change of Variable

Let X;Y be jointly Gaussian. Suppose we de�ne two new random variables U; V by

U = AX +BY + C

V = DX +EY + F

where A;B;C;D;E; F are constants. To avoid a degenerate situation, we require that AE�BD 6=
0. Under such a linear change of variable, it turns out that the new random variables U; V are also
jointly Gaussian. To �nd the joint density of (U; V ), you'd just have to perform the following three
steps

Step 1: Compute the values of the parameters

�u; �v ; �
2
u; �

2
v ; �u;v

from the values of the parameters

�x; �y; �
2
x; �

2
y ; �x;y

using the equations "
�u
�v

#
=

"
A B
D E

# "
�x
�y

#
+

"
C
F

#
"

�2u �u;v
�u;v �2v

#
=

"
A B
D E

# "
�2x �x;y
�x;y �2y

# "
A B
D E

#T

Step 2: Compute �u;v = �u;v=(�u�v).

Step 3: Plug the parameter values �u; �v; �
2
u; �

2
v ; �u;v into the following expression for the joint

density of U and V :

1

2��u�v
q
1� �2u;v

exp

"
� 1

2(1 � �2u;v)

(�
u� �u
�u

�2
+

�
v � �v
�v

�2
� 2�u;v

�
u� �u
�u

��
v � �v
�v

�)#

29.2.3 Proofs

The \Properties of Bivariate Gaussian" given earlier can be established by proving them for the
special case in which

�X = �Y = 0; �X = �Y = 1: (29.3)
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Discussion. You obtain RV's as in (29.3) by the change of variable

X 0 =
X � �X
�X

Y 0 =
Y � �Y
�Y

For example, if you've shown that X 0 is Gaussian(0,1), it will follow automatically that X is
Gaussian(�X ; �

2
X). Similarly, other properties of (X;Y ) follow from properties of (X 0; Y 0).

According to (29.3), we now consider the special case of a bivariate Gaussian distribution in
which the random variables X;Y have the joint density

f(x; y) =
1

2�
p
1� �2

exp

�
� 1

2(1� �2)
fx2 + y2 � 2�xyg

�
(29.4)

The parameter � is selected so as to satisfy �1 < � < 1. We want to compute the following entities:

fX(x); fY (y); f(xjy); f(yjx); rX;Y ; �X;Y ; �X;Y

We could compute all of these things by brute force integration. Instead, we will try to be a little
more subtle, in order to simplify our work. First, by the method of \completing the square", one
derives the identity

x2 + y2 � 2�xy = (x� �y)2 + (1� �2)y2

This allows us to break apart the exponent in (29.4) and then to factor (29.4) as

f(x; y) =

�
1p
2�

exp
�
�y2=2

�� " 1p
2�
p
1� �2

exp

�
� 1

2(1� �2)
fx� �yg2

�#
(29.5)

The �rst factor within brackets on the right side of (29.5) is a N(0; 1) density. The second factor,
considered as a function of x for �xed y, is a Gaussian density with mean �y and variance 1� �2.
Integrating to get fY (y), you get

fY (y) = [first factor]

Z 1

�1
[second factor] dx

Since the integral of the second factor is one (it is a density!), we see that fY (y) is equal to the
�rst factor, which then identi�es the second factor for us as the conditional density f(xjy). We
conclude:

fY (y) =
1p
2�

exp(�y2=2)

f(xjy) =
1p

2�
p
1� �2

exp(� 1

2(1 � �2)
fx� �yg2)
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By symmetry (reversing the roles of x and y), we then conclude that

fX(x) =
1p
2�

exp(�x2=2)

f(yjx) =
1p

2�
p
1� �2

exp(� 1

2(1 � �2)
fy � �xg2)

Putting all of this together, we can say the following.

� X and Y are each standard Gaussian

� The conditional distribution of X given Y = y is Gaussian with the conditional mean and
variance

E[XjY = y] = �y

Var[XjY = y] = 1� �2

� The conditional distribution of Y given X = x is Gaussian with the conditional mean and
variance

E[Y jX = x] = �x

Var[Y jX = x] = 1� �2

We now determine rX;Y ; �X;Y ; �X;Y . Since the means of X and Y are zero, rX;Y = �X;Y . Since
the variances of X and Y are one, �X;Y = �X;Y . Therefore, all three of these quantities are equal.
Observe that

E[XY jY = y] = E[XyjY = y] = yE[XjY = y] = �y2

Therefore,

rX;Y = E[XY ] =

Z 1

�1
E[XY jY = y]fY (y)dy

=

Z 1

�1
�y2fY (y)dy

= �E[Y 2] = �

We conclude that
rX;Y = �X;Y = �X;Y = �
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29.3 Proof of CLT

We prove the Central Limit Theorem in a special case. The random sample X1;X2; � � � ;Xn is
drawn according to the density

(1=2)Æ(x + 1) + (1=2)Æ(x � 1)

The mean � is 0 and the variance � is 1. Thus, we may express our normalized sum Zn as

Zn =
(X1 +X2 + : : : Xn)� n�p

n�
=

X1 +X2 + : : : Xnp
n

;

and so we are to show that

X1 +X2 + : : : Xnp
n

� Gaussian(0; 1);

for large n. Notice that

Zn =

�
X1p
n

�
+

�
X2p
n

�
+ : : :+

�
Xnp
n

�
(29.6)

From (29.6), we can deduce the following relationship among the moment generating functions
involved:

MZn(s) = [MX1=
p
n(s)]

n: (29.7)

We have
MX1=

p
n(s) = (1=2)es=

p
n + (1=2)e�s=

p
n = cosh(s=

p
n);

and therefore (29.7) becomes
MZn(s) = [cosh(s=

p
n]n:

To show that Zn becomes closer and closer to having a Gaussian(0,1) distribution as n becomes
large is equivalent to showing that the moment generating function MZn(s) becomes closer and
closer to the moment generating function exp(s2=2) of a Gaussian(0,1) RV. Thus, the CLT for our
special case will be proved if we can show that

lim
n!1[cosh(s=

p
n]n = exp(s2=2):

Taking the natural log of both sides, this reduces to showing that

lim
n!1n loge(cosh(s=

p
n)) = s2=2;

which, making the change of variable � = 1=
p
n, is the same as showing that

lim
�!0

loge(cosh(�s))

�2
= s2=2:
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This last relationship can be shown by using L'Hospital's Rule twice: Using L'Hospital the �rst
time, you get

lim
�!0

loge(cosh(�s))

�2
= s lim

�!0

sinh(�s))

2�
:

Using L'Hospital the second time, you get

s lim
�!0

sinh(�s))

2�
= s2 lim

�!0

cosh(�s))

2
= s2=2:
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Statistics Part 5

30.1 Review Example

Let X;Y have bivariate Gaussian joint density of form

fX;Y (x; y) = C exp
h
�0:5f4x2 � 16xy � 8x+ 20y2 � 16yg

i
: (30.1)

Find the cond mean E[XjY = y] and the cond var V ar[XjY = y]. I give two solutions.

Method 1: If you �x y in the joint density and then change the C in front to make the integral
with respect to x equal to 1, then you obtain the cond PDF fXjY (xjy). It will be a Gaussian
cond PDF and therefore of the form

C 0 exp

"
�0:5

(
(x� condmean)2

condvar

)#
:

The condmean term is of the form ay+ b and the condvar term is a constant; these will give
us E[XjY = y] and V ar[XjY = y], respectively. To get this form, we just have to complete
the square on the x terms within braces in (30.1):

4x2 � 16xy � 8x = 4[x2 � (4y + 2)x] = 4[(x � f2y + 1g)2] + �(y);

where �(y) is an additional term which we can ignore because it depends on y alone and we
are holding y �xed. We immediately conclude that

E[XjY = y] = 2y + 1

V ar[XjY = y] = 1=4

35



LECTURE 30. STATISTICS PART 5 36

Method 2: We have

E[XjY = y] = �X +
��X
�Y

(y � �Y ) (30.2)

V ar[XjY = y] = �2X(1� �2) (30.3)

If we can compute the 5 parameters �X , �Y , �
2
X , �

2
Y , and �, then we just plug these in the

two preceding equations. The point (x; y) = (�X ; �Y ) is where the Gaussian density surface
z = fX;Y (x; y) reaches its peak value. This is therefore the point at which the quantity in
braces in (30.1) is minimized, and we can �nd this point by solving the equations

@

@x
f4x2 � 16xy � 8x+ 20y2 � 16yg = 0

@

@y
f4x2 � 16xy � 8x+ 20y2 � 16yg = 0

These equations simplify to

8x� 16y = 8

�16x+ 40y = 16

Solving, we get
�X = 9; �Y = 4

To �nd the three remaining parameters, just look at the quadratic terms within the braces
in (30.1):

4x2 � 16xy + 20y2 = (x y)

 
4 �8

�8 20

!
(x y)T :

Invert the \matrix in the middle" to obtain the covariance matrix: 
�2X �X;Y

�X;Y �2Y

!
=

 
4 �8

�8 20

!�1
=

 
5=4 1=2
1=2 1=4

!

We conclude that

�2X = 5=4; �2Y = 1=4; � =
2p
5
:

Plugging these back into (30.2)-(30.3), we get the same answers we got via Method 1.
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30.2 Nonlinear Transformation of Multivariate Densities

Before giving the general theory, I give an instructive example.
Example 30.1. Let X;Y be independent Gaussian(0,1) RV's. Convert the random point (X;Y )

to polar coordinates (R;�). Find the joint PDF fR;�(r; �) of R, �. I solve this problem using the
following formula (which may be found in a calculus book) for converting double integrals from
rectangular to polar coordinates:ZZ

fxy regiong
�(x; y)dxdy =

ZZ
fr� regiong

�(r cos �; r sin �)rdrd� (30.4)

The function �(x; y) can be any integrable function. The reason (30.4) is true has to do with
the fact that the di�erential of area dxdy in rectangular coordinates x; y becomes di�erential of
area rdrd� in polar coordinates r; �. On the left side of (30.4), suppose that we take �(x; y) to be
fX;Y (x; y). Then (30.4) becomesZZ

fxy regiong
fX;Y (x; y)dxdy =

ZZ
fr� regiong

fX;Y (r cos �; r sin �)rdrd� (30.5)

Interpret the left side of (30.5) as a probability calculation for (X;Y ) falling in some xy-region.
Then we can regard the right side as giving the same answer for the probability of (R;�) falling in
the r�-region corresponding to the xy-region in going from rectangular to polar coordinates. Since
the integrand on the right side gives the right answer for any such probability calculation, that
integrand must be the joint density of R, �. In other words, we have proved the formula

fR;�(r; �) = r fX;Y (r cos �; r sin �):

In our particular case here, we have

fX;Y (x; y) =

�
1

2�

�
exp(�[x2 + y2]=2):

We have the following formula related polar coordinate r to rectangular coordinates x; y:

r2 = x2 + y2:

Therefore,

fR;�(r; �) = r

�
1

2�

�
exp(�r2=2); r > 0; 0 � � < 2�

We can make further conclusions about the marginal distributions of R and �: By the factorization
rule, R and � must be statistically independent and their marginal PDF's are

fR(r) = r exp(�r2=2); r > 0 (zero elsewhere) (30.6)

f�(�) =
1

2�
; 0 � � < 2� (zero elsewhere) (30.7)
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From (30.7), we see that � is uniformly distributed from 0 to 2�. The density for R in (30.6) is new
to us and de�nes what is called a Rayleigh distribution (see page 506 of Appendix A). The Rayleigh
distribution pops up in various applications, particularly in applications to radar detection.

Discussion. Example 30.1 has pointed up one particular nonlinear transformation of interest,
namely the transformation that takes you from rectangular coordinates x; y to polar coordinates
r; �. In equation (30.4), the r in the di�erential of area rdrd�, can be viewed as arising from the
formula �����det

 
@x
@r

@y
@r

@x
@�

@y
@�

!����� = r: (30.8)

The reader is invited to verify this formula by evaluating the four partial derivatives on the left
side from the equations

x = r cos �

y = r sin �

The determinant on the left side of (30.8) is called the Jacobean of the \old coordinates" x; y
with respect to the \new coordinates" r; �, and is denoted by J(r; �). Thus, we have the following
formula relating the di�erential of area in the old coordinates to the di�erential of area in the new
coordinates:

dxdy = jJ(r; �)jdrd�:
Suppose more generally that we go from rectangular coordinates x; y to coordinates u; v in a

new coordinate system, via a nonlinear transformation of the form

u = g1(x; y) (30.9)

v = g2(x; y) (30.10)

Solving for the old coordinates x; y in terms of the new coordinates u; v, we could obtain equations
of the form

x = h1(u; v)

y = h2(u; v)

The Jacobean J(u; v) would be de�ned by

J(u; v)
�
= det

 
@x
@u

@y
@u

@x
@v

@y
@v

!

The di�erential of area in x; y coordinates would be related to the di�erential of area in u; v
coordinates by the equation

dxdy = jJ(u; v)jdudv:
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A double integral in the old coordinates could then be converted to a double integral in the new
coordinates as follows:ZZ

fxy regiong
�(x; y)dxdy =

ZZ
fuv regiong

�(h1(u; v); h2(u; v))jJ(u; v)jdudv (30.11)

You can �nd formula (30.11) in many calculus books.1

Conclusion. Let X;Y be RV's with joint density fX;Y (x; y). Obtain new RV's U; V by trans-
forming from x; y coordinates to u; v coordinates according to formulas (30.9)-(30.10). Then, from
equation (30.11), we can conclude that the joint density fU;V (u; v) is obtainable via the formula

fU;V (u; v) = fX;Y (h1(u; v); h2(u; v))jJ(u; v)j (30.12)

Example 30.2. Let X;Y be independent continuously distributed RV's. Suppose we want to
�nd the density of the new RV

U = XY:

(For example, X might be \current", Y might be \resistance", and U might be \voltage".) Here
is how we can do this: Introduce a second spurious RV V , �nd fU;V (u; v), and then integrate out
the v variable to obtain the density fU (u) of U . Let us take our \spurious" second variable V in
this case as follows:

V = X:

In other words, we are performing the following nonlinear transformation from coordinates x; y to
coordinates u; v:

u = xy

v = x

The inverse transformation is

x = v

y = u=v

and from this one determines that the absolute value of the Jacobean is

jJ(u; v)j = 1

jvj :

Plugging into (30.12), we obtain

fU;V (u; v) =
fX(v)fY (u=v)

jvj ;

1For example, see page 743 of the Third Edition of Calculus and Analytic Geometry by Professor George Thomas
(Addison-Wesley Pub. Co., 1965). This is one of the most celebrated calculus books written on Planet Earth.
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and therefore we have the following formula for the PDF of U = XY :

fU(u) =

Z 1

�1
fX(x)fY (u=x)

jxj dx:

Exercise. Let X;Y be continuously distributed independent RV's. Let U = X=Y . Prove that

fU (u) =

Z 1

�1
jyjfX(uy)fY (y)dy:

Hint: For the transformation

u = x=y

v = y

�nd fU;V (u; v) and then integrate out the variable v.

30.3 Point Estimation of a Parameter

Suppose you have a random sample X1;X2; � � � ;Xn of size n from some prob dist with unknown
parameter �. A point estimator for � could be any function �̂ = �̂(X1;X2; � � � ;Xn) of the random
sample that does not depend on any unknown parameters. Keep in mind that your point estimator
�̂ is a random variable. If you have a pretty good point estimator �̂, then a large percentage of the
time your observation of the value of the random variable �̂ will agree with � to so many decimal
places. It is our job in this section to give you some evaluation criteria that will help you decide
whether a point estimator is a good point estimator. By the end of this section, you will have
been exposed to three types of point estimators: (i)unbiased estimators, (ii) consistent estimators,
and (iii) minimum variance estimators. One generally tries to select a point estimator that is
simultaneously of all three types.

Examples of Point Estimators

Let � and �2 be the mean and variance of the distribution you're sampling from. Then:

� The sample mean �Xn is typically used as a point estimator for �.

� If � is known, then Pn
i=1(Xi � �)2

n
(30.13)

is typically used as a point estimator for �2.
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� If � is unknown, then the sample variance, de�ned earlier and given by

Pn
i=1(Xi � �Xn)

2

n� 1
;

is typically used as a point estimator for �2.

30.3.1 Unbiased Point Estimators

The point estimator �̂(X1;X2; � � � ;Xn) is said to be unbiased if

E[�̂(X1;X2; � � � ;Xn)] = �;

no matter what the value of � is. Two reasons for seeking an unbiased estimator �̂ are:

� If �̂ is unbiased, its uctuations about � upon repeated observation tend to cancel each other
out in the long run. That is, you will have

E[�̂ � �] = 0:

� If �̂ is unbiased, then
V ar(�̂) = E[(�̂ � �)2]:

The number E[(�̂ � �)2] is the so-called \mean square estimation error". Designing the
estimator to make the mean square estimation error small is therefore the same thing as
making the variance of the estimator small, if you're dealing with unbiased estimators.

Examples of Unbiased Estimators

We establish that all three point estimators mentioned previously are unbiased.

� The sample mean �Xn is an unbiased estimator of �. We established this in an earlier set of
notes.

� When � is known, the estimator (30.13) is an unbiased estimator of �2. To establish this,
note that

E[(Xi � �)2] = �2

for all i. Therefore,

E

"Pn
i=1(Xi � �)2

n

#
=

n�2

n
= �2;

doing the expected value term by term.
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� The sample variance is an unbiased estimator of �2. To establish this, one �rst proves the
identity

sample variance =
n

n� 1

"
�( �Xn � �)2 +

Pn
i=1(Xi � �)2

n

#
(30.14)

(I will prove (30.14) at the end of this subsection.) The expected value of the right side of
(30.14) is

n

n� 1

"
��

2

n
+ �2

#
; (30.15)

because
�2

n
= V ar( �Xn) = E[( �Xn � � �Xn

)2] = E[ �Xn � �)2]:

Simple algebra shows that (30.15) is equal to �2.

Proof of (30.14). Let x1; x2; � � � ; xn be any real numbers and let �x be the average of these
numbers. I show for any constant C thatPn

i=1(xi � �x)2

n
= �(�x� C)2 +

Pn
i=1(xi � C)2

n
(30.16)

Once I prove (30.16), equation (30.14) will clearly follow. Consider the prob dist given by the
density function

n�1
nX
i=1

Æ(x� xi):

The mean of this prob dist is �x. The left side of (30.16) is therefore the variance of this prob dist.
Therefore equation (30.16) is just a special case of formula (10.5) of Section 10.4 of the class notes.

30.3.2 Consistent Estimators

Suppose the point estimator �̂(X1;X2; � � � ;Xn) is de�ned no matter how big the sample size n is.
We use notation �̂n for �̂(X1;X2; � � � ;Xn) to denote the dependence of this estimator upon n. We
say that �̂n is a consistent estimator for � if

lim
n!1P [� � � � �̂n � � + �] = 1;

for every � > 0. If you look back in Section 26.4, you will see the de�nition of stochastic conver-
gence. Saying that �̂n is a consistent estimator for � is the same thing as saying that �̂n converges
stochastically to � as n!1.

The concept of consistent estimator is important for the following reason: If �̂n is a consistent
estimator of �, then no matter how small a � > 0 you pick, you can pick n large enough so that

[�̂n � �; �̂n + �]
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will be a con�dence interval for � having whatever preset level of con�dence that you would like.
For example, if you want a 90% con�dence interval for � with � = 0:01, you will be able to select
sample size n so that

P [�̂n � 0:01 � � � �̂n + 0:01] � 0:90;

which is the statement that
[�̂n � 0:01; �̂n + 0:01]

is a 90% con�dence interval for �.
All three of the point estimators given earlier in this lecture are consistent estimators. Let's see

why this is true.

� �Xn is a consistent estimator for � by the law of large numbers, established in Section 26.4.

� If � is known,
Pn

i=1(Xi � �)2=n is a consistent estimator for �2. To see this, note that the
RV's

Yi = (Xi � �)2; i = 1; 2; � � �
are independent, all have the same distribution, and therefore all have the same mean, which
is �2. Therefore, by the law of large numbers, (

Pn
i=1 Yi)=n converges stochastically to �2, the

mean of the Yi's.

� It is a little bit harder to show that the sample variance (26.1) is a consistent estimator for
�2. We use the following fact about stochastic convergecne, which is not hard to prove: if Yn
converges stochastically to a real number � and Zn converges stochoastically to a real number
�, then An(Yn + Zn) converges stochastically to �+ � for any sequence An of real numbers
converging to 1. We now appeal to equation (30.15), choosing

Yn = �( �Xn � �)2

Zn =
nX
i=1

(Xi � �)2=n

An =
n

n� 1

Yn converges stochastically to 0, Zn converges stochastically to �2, and so An(Yn + Zn), the
sample variance, converges stochastically to 0 + �2 = �2.

30.3.3 Minimum Variance Estimators

In this section, we restrict ourselves to all unbiased estimators of parameter � that are based on
a �xed number of samples n. Which one of these is the \best"? Let �̂1 and �̂2 be two unbiased
estimators of �, and suppose that

V ar(�̂1) < V ar(�̂2):
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This is the same thing as saying that

E[(�̂1 � �)2] < E[(�̂2 � �)2];

which is the statement that the mean square estimation error for �̂1 is smaller than the mean square
estimation error for �̂2. Our goal should be to select an estimator for � with the smallest possible
mean square estimation error. Suppose we can �nd an unbiased estimator �̂ such that the variance
of �̂ is � the variance of any other unbiased estimator for �. Then we call �̂ a minimum variance

estimator. It will yield the smallest possible mean square estimation error in estimating �.
Statisticians have devoted a lot of study towards �nding minimum variance estimators. They

have shown that if the prob dist you sample from is suÆciently nice, then there will exist a minimum
variance estimator. In particular, if you sample from a Gaussian distribution, the following result
is well known.

Result. If you sample from a Gaussian distribution with mean � then the sample mean �Xn is a
minimum variance estimator for �.

You will �nd this result in any good statistics book.2 It is not that easy to prove without developing
more statistical methods than we presently have at our disposal.

30.4 Random Process Introduction

In the last part of EE 3025, we consider random processes (also called stochastic processes or random
signals). There are four kinds of random processes:

� A discrete-time unilateral random process is an in�nite collection of random variables

Xn; n = n0; n0 + 1; n0 + 2; : : :

where n0 is the \starting time".

� A discrete-time bilateral random process is an in�nite collection of random variables

Xn; n = 0;�1;�2;�3; : : :

� A continuous-time unilateral random process is an in�nite collection of random variables

X(t); t � t0

where t0 is the \starting time".

2For example, you may �nd this result in the textbook Introduction to Mathematical Statistics: Second Edition

by Robert Hogg and Allen Craig (The MacMillan Pub. Co., 1965).
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� A continuous-time bilateral random process is an in�nite collection of random variables

X(t); �1 < t <1

Each time you perform an experiment on which a random process is de�ned, the outcome
is one entire continuous-time or discrete-time signal extending in�nitely in time. Thus, you are
generating a signal at random and that is why \random signal" is a good alternate terminology for
\random process". The di�erent signals you get by performing the experiment over and over are
called realizations of the random process. The set of all possible realizations of a random process is
called the ensemble of all realizations. With this terminology, you can now can think of the random
experiment as choosing for you a realization at random from the ensemble of realizations, on each
performance of the experiment.

The realizations of discrete-time random processes are discrete-time deterministic signals, and
the realizations of continuous-time random processes are continuous-time deterministic signals.

Example 30.3. A random experiment consists of ipping a fair coin in�nitely many times. For
each nonnegative integer n, de�ne the random variable Xn to be equal to 1 if the n-th ip results in
\heads", and de�ne Xn to be �1 if the n-ip results in \tails". The discrete-time random process
Xn; n = 1; 2; 3; : : : is called the Bernoulli process. The ensemble of realizations of the Bernoulli
process consists of all discrete-time signals xn; n = 1; 2; 3; : : :, in which the signal amplitude xn for
each n is �1. The beginning of one particular Bernoulli process realization is plotted below. This
plot tells us that the �rst 7 coin ips resulted in H,H,T,H,T,T,T,

Next lecture, I will give more examples of random processes.
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