Solutions to EE 3025 Recitation 10 Review Problems for Exam 2

1. Let RV X have variance 100 and let RV Y have variance 400 .
(a) If the correlation coefficient $\rho_{X, Y}$ is $1 / 2$, compute $\operatorname{Var}(X+Y)$ and $\operatorname{Var}(X-Y)$.

Solution. We have

$$
\operatorname{Cov}(X, Y)=\rho \sigma_{X} \sigma_{Y}=(1 / 2)(10)(20)=100
$$

Therefore,

$$
\begin{aligned}
& \operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)=700 \\
& \operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)-2 \operatorname{Cov}(X, Y)=300
\end{aligned}
$$

(b) On the other hand, if $\operatorname{Var}(X+Y)=400$ and $\operatorname{Var}(X-Y)=600$, figure out what the correlation coefficient $\rho_{X, Y}$ is. Then, compute $\operatorname{Var}(3 X-2 Y)$.
Solution. We have

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)=500+2 \operatorname{Cov}(X, Y)=400
$$

and therefore

$$
\operatorname{Cov}(X, Y)=-50
$$

(The $\operatorname{Var}(X-Y)$ condition is not needed.) Then

$$
\rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{-50}{(10)(20)}=-1 / 4
$$

$\operatorname{Var}(3 X-2 Y)=9 \operatorname{Var}(X)+4 \operatorname{Var}(Y)-12 \operatorname{Cov}(X, Y)=9 * 100+4 * 400-12 *(-50)=3100$.
2. Let RV X have variance 100 and let RV Y have variance 400 . Let $\operatorname{Cov}(X, Y)$ be 100 .
(a) Find the constant C that makes

$$
\operatorname{Cov}(X, X-C Y)=0
$$

In other words, you are making X and $X-C Y$ uncorrelated.

Solution.

$$
\operatorname{Cov}(X, X-C Y)=\operatorname{Cov}(X, X)-C * \operatorname{Cov}(X, Y)=100-C * 100=0
$$

Take $C=1$.
(b) Find the constant D that makes

$$
\operatorname{Var}(X-D Y)
$$

a minimum.

Solution.

$\operatorname{Var}(X-D Y)=\operatorname{Var}(X)+D^{2} \operatorname{Var}(Y)-2 D * \operatorname{Cov}(X, Y)=100 * 400 D^{2}-200 D$.
Set the derivative equal to zero:

$$
800 D-200=0
$$

You see that $D=1 / 4$.
3. Discrete RV's X, Y are independent. The PDF of X is

$$
(0.2) \delta(x-1)+(0.4) \delta(x-3)+(0.4) \delta(x-4) .
$$

The PDF is Y is

$$
(0.4) \delta(y+1)+(0.6) \delta(y-2)
$$

(a) Use convolution to find the PDF of $U=X+Y$.

Solution. Think of these as two functions of time that you are convoluting:

$$
(0.2) \delta(t-1)+(0.4) \delta(t-3)+(0.4) \delta(t-4)
$$

and

$$
(0.4) \delta(t+1)+(0.6) \delta(t-2)
$$

First, convolute the 1 st signal with $(0.4) \delta(t+1)$:

$$
0.4[(0.2) \delta(t)+(0.4) \delta(t-2)+(0.4) \delta(t-3)]
$$

Then, convolute the 1 st signal with $(0.6) \delta(t-2)$:

$$
0.6[(0.2) \delta(t-3)+(0.4) \delta(t-5)+(0.4) \delta(t-6)]
$$

Then add the two results, writing as a function of U :

$$
0.08 \delta(u)+0.16 \delta(u-2)+0.28 \delta(u-3)+0.24 \delta(u-5)+0.24 \delta(u-6)
$$

(b) Use convolution to find the PDF of $V=2 X-Y$.

Solution. First, write down the PDF of $2 X$ as a function of t :

$$
(0.2) \delta(t-2)+(0.4) \delta(t-6)+(0.4) \delta(t-8)
$$

Then, write down the PDF of $-Y$ as a function of t :

$$
(0.4) \delta(t-1)+(0.6) \delta(t+2)
$$

Convolute the 1 st signal with $(0.4) \delta(t-1)$:

$$
0.4[(0.2) \delta(t-3)+(0.4) \delta(t-7)+(0.4) \delta(t-9)]
$$

Convolute the 1 st signal with $(0.6) \delta(t+2)$:

$$
0.6[(0.2) \delta(t)+(0.4) \delta(t-4)+(0.4) \delta(t-6)]
$$

Add the two results, writing as a function of v :

$$
0.12 \delta(v)+0.08 \delta(v-3)+0.24 \delta(v-4)+0.24 \delta(v-6)+0.16 \delta(v-7)+0.16 \delta(v-9)
$$

4. Let I, R be nonnegative continuously distributed RV's. Use the CDF method to show that $V=I R$ has PDF

$$
f_{V}(v)=\int_{0}^{\infty} \frac{1}{i} f_{I}(i) f_{R}(v / i) d i, \quad v \geq 0 \text { (zero elsewhere). }
$$

Solution. For $v \geq 0$,

$$
F_{V}(v)=P[V \leq v]=P[I R \leq v]=\int_{0}^{\infty} P[I R \leq v \mid I=i] f_{I}(i) d i
$$

Now

$$
P[I R \leq v \mid I=i]=P[i R \leq v \mid I=i]=P[R \leq v / i]=F_{R}(v / i)
$$

Therefore,

$$
F_{V}(v)=\int_{0}^{\infty} F_{R}(v / i) f_{I}(i) d i
$$

Differentiating both sides,

$$
f_{V}(v)=d F_{V}(v) / d v=\int_{0}^{\infty} \partial F_{R}(v / i) f_{I}(i) / \partial v d i
$$

Plugging in

$$
\partial F_{R}(v / i) f_{I}(i) / \partial v=(1 / i) f_{R}(v / i) f_{I}(i)
$$

we obtain the desired result.
5. X, Y have the bivariate Gaussian density

$$
f_{X, Y}(x, y)=C \exp \left(-0.5\left[x^{2}-2 x y+4 y^{2}\right]\right) .
$$

(a) What are $\mu_{X}, \mu_{Y}, \sigma_{X}, \sigma_{Y}, \rho_{X, Y}$?

Solution. Since there are no x, y terms in the exponent,

$$
\mu_{X}=\mu_{Y}=0
$$

Note that

$$
x^{2}-2 x y+4 y^{2}=\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{rr}
1 & -1 \\
-1 & 4
\end{array}\right)\left(\begin{array}{ll}
x & y
\end{array}\right)^{T} .
$$

The inverse of the "matrix in the middle" is the covariance matrix, which is

$$
\left(\begin{array}{cc}
4 / 3 & 1 / 3 \\
1 / 3 & 1 / 3
\end{array}\right)=\left(\begin{array}{cc}
\sigma_{X}^{2} & \sigma_{X, Y} \\
\sigma_{X, Y} & \sigma_{Y}^{2}
\end{array}\right)
$$

We have

$$
\begin{gathered}
\sigma_{X}^{2}=4 / 3, \quad \sigma_{Y}^{2}=1 / 3, \quad \sigma_{X, Y}=1 / 3 \\
\rho=\frac{\sigma_{X, Y}}{\sigma_{X} \sigma_{Y}}=\frac{1 / 3}{\sqrt{4 / 3} \sqrt{1 / 3}}=1 / 2
\end{gathered}
$$

(b) What are $E[X \mid Y=1]$ and $E[Y \mid X=1]$?

Solution. For every y,

$$
E[X \mid Y=y]=\mu_{X}+\rho\left(\sigma_{X} / \sigma_{Y}\right)\left(y-\mu_{Y}\right)=y
$$

Therefore,

$$
E[X \mid Y=1]=1
$$

For every x,

$$
E[Y \mid X=x]=\mu_{Y}+\rho\left(\sigma_{Y} / \sigma_{X}\right)\left(x-\mu_{X}\right)=x / 4
$$

Therefore

$$
E[Y \mid X=1]=1 / 4
$$

6. Let X be $\operatorname{Uniform}(0,1)$.
(a) Find the PDF of $Y=X^{3}$.

Solution. Y ranges from 0 to 1 . For each fixed y in this range,

$$
F_{Y}(y)=P(Y \leq y)=P\left(X^{3} \leq y\right)=P\left(X \leq y^{1 / 3}\right)=y^{1 / 3}
$$

Differentiating,

$$
\left.f_{Y}(y)=(1 / 3) y^{-2 / 3}, \quad 0 \leq y \leq 1 \text { (zero elsewhere }\right) .
$$

(b) Find the PDF of $Y=X(1-X)$.

Solution. First, plot the curve $y=x(1-x)$ from $x=0$ to $x=1$. You'll see that Y ranges from 0 to $1 / 4$. For each y between 0 and $1 / 4$, there are two x values such that $x(1-x)=y$, namely, the values

$$
x_{1}(y)=\frac{1-\sqrt{1-4 y}}{2}, \quad x_{2}(y)=\frac{1+\sqrt{1-4 y}}{2} .
$$

From the curve $y=x(1-x)$, you will see that the event $\{Y \leq y\}$ can be broken down as follows:

$$
\{Y \leq y\}=\left\{X \leq x_{1}(y)\right\} \cup\left\{X \geq x_{2}(y)\right\}
$$

Therefore,

$$
P(Y \leq y)=P\left(X \leq x_{1}(y)\right)+P\left(X \geq x_{2}(y)\right)
$$

By symmetry, the two prob on the right side are equal and so

$$
P(Y \leq y)=2 P\left(X \leq x_{1}(y)\right)=2 x_{1}(y)=1-\sqrt{1-4 y}
$$

Differentiating,

$$
f_{Y}(y)=\frac{2}{\sqrt{1-4 y}}, \quad 0 \leq y \leq 1 / 4(\text { zero elsewhere }) .
$$

7. Let X_{1}, X_{2} be independent discrete RV's each taking the values $1,2,3$ with probability $1 / 3$ each.
(a) Find the PMF of $U=\max \left(X_{1}, X_{2}\right)$.
(b) Find the PMF of $V=\min \left(X_{1}, X_{2}\right)$.

Solution. There's a clever way to work (a),(b) in a unified way. Map (X_{1}, X_{2}) values into (U, V) values:

X 1	X 2	U	V
1	1	1	1
1	2	2	1
1	3	3	1
2	1	2	1
2	2	2	2
2	3	3	2
3	1	3	1
3	2	3	2
3	3	3	3

Each $\left(X_{1}, X_{2}\right)$ value has prob $1 / 9$. This allows you to construct the following U, V joint prob table:

$$
\begin{aligned}
& V=1 \\
& U=1 \\
& U=2 \\
& U=3 \\
& U=3
\end{aligned}\left(\begin{array}{ccc}
1 / 9 & 0 & 0 \\
2 / 9 & 1 / 9 & 0 \\
2 / 9 & 2 / 9 & 1 / 9
\end{array}\right)
$$

The row sums and column sums are the PMF's of U, V, respectively.
8. Let X, Y be discrete RV's whose joint PMF takes the form

$$
P[X=i, Y=j]=C|i-2 j|,
$$

for $i, j=1,2,3$ and 0 elsewhere.
(a) Find the constant C.

Solution. C must be the reciprocal of the sum

$$
\sum_{i, j=1}^{3}|i-2 j| .
$$

(b) Find the marginal PMF $p_{X}(x)$.

Solution.

$$
p_{X}(i)=C \sum_{j=1}^{3}|i-2 j|, \quad i=1,2,3 .
$$

(c) Find the conditional PMF of Y given $X=2$.

Solution.

$$
p_{Y \mid X}(y \mid x=2)=\frac{C|2-2 y|}{p_{X}(2)}, \quad y=1,2,3 .
$$

(d) Compute $E[Y \mid X=2]$.

Solution.

$$
E[Y \mid X=2]=\sum_{y=1}^{3} y\left[C|2-2 y| / p_{X}(2)\right]
$$

(e) Compute the correlation $E[X Y]$.

Solution.

$$
E[X Y]=\sum_{i, j=1}^{3} C i j|i-2 j| .
$$

9. Let X, Y be jointly continuous RV's whose joint PDF takes the form

$$
f(x, y)=C(x+2 y)
$$

for $0 \leq x \leq 2$ and $0 \leq y \leq 1$.
(a) Find the constant C.

Solution. C must be the reciprocal of the double integral

$$
\int_{0}^{1} \int_{0}^{2}(x+2 y) d x d y
$$

(b) Find the marginal PDF $f_{X}(x)$.

Solution.

$$
f_{X}(x)=\int_{0}^{1} C(x+2 y) d y
$$

for $0 \leq x \leq 2$.
(c) Find the conditional PDF of Y given $X=1$.

Solution.

$$
f_{Y \mid X}(y \mid x=1)=\frac{C(1+2 y)}{f_{X}(1)}, \quad 0 \leq y \leq 1 .
$$

(d) Compute $P[Y<1 / 2 \mid X=1]$.

Solution.

$$
P(Y<1 / 2 \mid X=1)=\int_{0}^{1 / 2} \frac{C(1+2 y)}{f_{X}(1)} d y
$$

(e) Compute the correlation $E[X Y]$.

Solution.

$$
E[X Y]=\int_{0}^{1} \int_{0}^{2} C x y(x+2 y) d x d y
$$

10. Let (X, Y) be uniformly distributed over the triangular region inside the triangle in the xy-plane whose three vertices are $(0,0),(5,0),(3,3)$
(a) Find μ_{X}, μ_{Y}.

Solution.

$$
\left(\mu_{X}, \mu_{Y}\right)=(1 / 3)[(0,0)+(5,0)+(3,3)] .
$$

(b) Find $E[X \mid Y=y]$ as a function of y. This is a straight line function of y. What is this straight line in terms of the triangular region? Indicate on a plot.
Solution. It's the median line that connects vertex $(3,3)$ to the midpoint of the opposite side.
11. Let X, Y be jointly continuously distributed with joint density

$$
f_{X, Y}(x, y)= \begin{cases}2, & 0 \leq y \leq x \leq 1 \\ 0, & \text { elsewhere }\end{cases}
$$

(a) Set up the double integral for $E[X Y]$ with all 4 limits properly inserted. Do not integrate.

Solution.

$$
E[X Y]=\int_{0}^{1} \int_{0}^{x} x y f(x, y) d y d x
$$

(b) Set up $E[X \mid Y=0.5]$ as the ratio of two one-dimensional integrals with all the limits properly inserted. Do not integrate.

Solution.

$$
E[X \mid Y=0.5]=\frac{\int_{1 / 2}^{1} x f(x, y) d x}{\int_{1 / 2}^{1} f(x, y) d x}
$$

in which you substitute $y=0.5$.
(c) Set up $P\left[X^{2}+Y^{2} \leq 0.25\right]$ as a double integral in polar coordinates with all the limits properly inserted. Do not integrate.

Solution.

$$
\int_{0}^{\pi / 4} \int_{0}^{1 / 2} 2 r d r d \theta
$$

12. Bill eats X ice cream cones, where X is Poisson with parameter 2. Bill then runs Y miles, where Y is the number of heads obtains in flipping a fair coin $X+2$ times. Use the law of iterated expectation to compute:
(a) $E[Y]$.

Solution.

$$
\begin{gathered}
E[Y \mid X]=(X+2) / 2 \\
E[Y]=E[E[Y \mid X]]=(1 / 2)(E[X]+2)=2 .
\end{gathered}
$$

(b) $\operatorname{Var}[Y]$.

Solution.

$$
\begin{gathered}
\operatorname{Var}[Y \mid X]=(X+2) / 4 \\
E\left[Y^{2} \mid X\right]=E[Y \mid X]^{2}+\operatorname{Var}[Y \mid X]=(X+2)^{2} / 4+(X+2) / 4 \\
E\left[Y^{2}\right]=E\left[(X+2)^{2}\right] / 4+E[X+2] / 4
\end{gathered}
$$

Expand this using $E[X]=2, E\left[X^{2}\right]=6$. Then use the formula

$$
\operatorname{Var}[Y]=E\left[Y^{2}\right]-\mu_{Y}^{2} .
$$

(c) $E[X Y]$.

Solution.

$$
\begin{gathered}
E[X Y \mid X]=X E[Y \mid X]=X(X+2) / 2 \\
E[X Y]=E[X(X+2)] / 2
\end{gathered}
$$

(d) $\operatorname{Cov}[X, Y]$.

Solution. It's $E[X Y]-\mu_{X} \mu_{Y}$.
(e) $\rho_{X, Y}$.

Solution. It's $\operatorname{Cov}[X, Y]$ divided by $\sigma_{X} \sigma_{Y}$. Use $\sigma_{X}=\sqrt{2}$.
13. Discrete random variables N and K have the joint PMF

$$
P_{N, K}(n, k)=\left\{\begin{aligned}
\frac{100^{n} e^{-100}}{(n+1)!}, & k=0,1, \cdots, n ; n=0,1,2, \cdots \\
0, & \text { elsewhere }
\end{aligned}\right.
$$

(a) Find $P_{N}(n)$.

Solution.

$$
P_{N}(n)=\sum_{k=0}^{n} P_{N, K}(n, k)=(100)^{n} \exp (-100) / n!, n=0,1,2,3, \cdots
$$

This is the Poisson(100) distribution.
(b) Find $P_{K \mid N}(k \mid n)$.

Solution.

$$
P_{K \mid N}(k \mid n)=\frac{P_{N, K}(n, k)}{P_{N}(n)}=1 /(n+1), k=0,1, \cdots, n
$$

In other words, this cond dist is DiscreteUniform($0, n$).
(c) Compute $E[K \mid N=n]$.

Solution. $E[K \mid N=n]=(0+n) / 2$, the mean of $\operatorname{DiscreteUniform}(0, n)$. (See Appendix A.)
(d) Compute $E[K]$ via law of iterated expectation formula

$$
E[K]=E[E[K \mid N]] .
$$

Solution. $E[K \mid N]=N / 2$. Therefore,

$$
E[K]=E[E[K \mid N]]=E[N / 2]=50
$$

since N is Poisson with mean 100 .
14. $X_{1}, X_{2}, \cdots, X_{10}$ are independent RV's which are each uniformly distributed bewteeen -2 and 2. Let

$$
S=X_{1}+X_{2}+\cdots+X_{10}
$$

(a) Determine the correlation between S and the RV

$$
U=X_{1}-X_{2}+X_{3}-X_{4}+X_{5}-X_{6}+X_{7}-X_{8}+X_{9}-X_{10}
$$

(b) Determine the correlation between S and the RV

$$
V=X_{1}-X_{2}+X_{3}-X_{4}+X_{5}
$$

(c) Determine the correlation between S and the RV

$$
W=X_{6}+X_{7}+X_{8}+X_{9}+X_{10}
$$

Solution. For $i \neq j$,

$$
E\left[X_{i} X_{j}\right]=E\left[X_{i}\right] E\left[X_{j}\right]=0 * 0=0
$$

Therefore, if you have to compute the expected value of the product of two linear comb's of the X_{i} 's, you only have to pay attention to product terms of the form $X_{i} * X_{i}=X_{i}^{2}$.

Solution to (a). The only X_{i}^{2} terms appearing in the product of S times U are:

$$
X_{1}^{2}-X_{2}^{2}+X_{3}^{2}-X_{4}^{2}+X_{5}^{2}-X_{6}^{2}+X_{7}^{2}-X_{8}^{2}+X_{9}^{2}-X_{10}^{2}
$$

When you take the expected value term by term, the expected values can cancel out:

$$
\left.E X_{1}^{2}\right]-E\left[X_{2}^{2}\right]+\cdots+E\left[X_{9}^{2}\right]-E\left[X_{10}^{2}\right]=0
$$

Solution to (b). Just paying attention to the expected values of the X_{i}^{2} terms in $S V$:

$$
=E\left[X_{1}^{2}\right]-E\left[X_{2}^{2}\right]+E\left[X_{3}^{2}\right]-E\left[X_{4}^{2}\right]+E\left[X_{5}^{2}\right]=E\left[X_{5}^{2}\right]=\operatorname{Var}\left(X_{5}\right)=4^{2} / 12=4 / 3
$$

Solution to (c). By inspection, you'll get 5 times $E\left[X_{1}\right]^{2}$, which is $20 / 3$.
15. X and Y are jointly Gaussian RV's with $E[X]=E[Y]=0$ and $\operatorname{Var}[X]=\operatorname{Var}[Y]=1$. Furthermore,

$$
E[Y \mid X]=X / 2
$$

What is the joint PDF of X and Y ?
Solution. We have

$$
\mu_{Y \mid X=x}=x / 2 .
$$

The coefficient of x, which is $1 / 2$, must be equal to

$$
1 / 2=\rho \sigma_{Y} / \sigma_{X}=\rho
$$

Therefore,

$$
\operatorname{Var}(Y \mid X)=\sigma_{Y}^{2}\left(1-\rho^{2}\right)=3 / 4
$$

The conditional density of Y given $X=x$ is therefore

$$
\frac{1}{\sqrt{2 \pi} \sqrt{3 / 4}} \exp \left(-0.5 \frac{\left(y-\mu_{Y \mid X=x}\right)^{2}}{3 / 4}\right) .
$$

Multiplying this by the Gaussian $\left(\mu_{X}, \sigma_{X}^{2}\right)$ density, we get the joint density

$$
\frac{1}{\sqrt{2 \pi}} \exp \left(-0.5 x^{2}\right) \frac{1}{\sqrt{2 \pi} \sqrt{3 / 4}} \exp \left(-2(y-x / 2)^{2} / 3\right)
$$

which simplifies to

$$
\frac{1}{2 \pi \sqrt{3 / 4}} \exp \left(-2\left\{x^{2}+y^{2}-x y\right\} / 3\right)
$$

16. Three RV's X, Y, Z have a "trivariate" Gaussian distribution in which their joint density $f(x, y, z)$ takes the form

$$
f(x, y, z)=C \exp \left(-0.5\left[3 x^{2}+6 y^{2}+4 z^{2}+4 x y-2 x z+2 y z\right]\right)
$$

where C is a (unique) positive constant that one does not need to know in order to work this problem.
(a) Compute the three variances $\sigma_{X}^{2}, \sigma_{Y}^{2}, \sigma_{Z}^{2}$. (Hint: Invert a certain 3×3 matrix.) Solution. You get the covariance matrix by inverting the matrix

$$
\begin{array}{rrr}
3 & 2 & -1 \\
2 & 6 & 1 \\
-1 & 1 & 4
\end{array}
$$

which gives

$23 / 43$	$-9 / 43$	$8 / 43$
$-9 / 43$	$11 / 43$	$-5 / 43$
$8 / 43$	$-5 / 43$	$14 / 43$

Therefore,

$$
\sigma_{X}^{2}=23 / 43, \quad \sigma_{Y}^{2}=11 / 43, \quad \sigma_{Z}^{2}=14 / 43
$$

(b) Compute the three correlation coefficients $\rho_{X, Y}, \rho_{X, Z}, \rho_{Y, Z}$.

Solution.

$$
\begin{aligned}
\rho_{X, Y} & =\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{-9 / 43}{\sigma_{X} \sigma_{Y}}=-0.5658 \\
\rho_{X, Z} & =\frac{\operatorname{Cov}(X, Z)}{\sigma_{X} \sigma_{Z}}=\frac{8 / 43}{\sigma_{X} \sigma_{Z}}=-0.4458 \\
\rho_{Y, Z} & =\frac{\operatorname{Cov}(Y, Z)}{\sigma_{Y} \sigma_{Z}}=\frac{-5 / 43}{\sigma_{Y} \sigma_{Z}}=-0.4029
\end{aligned}
$$

(c) Determine the joint density of Y and Z. (Hint: This is a bivariate Gaussian density.)
Solution. The means of X, Y, Z are each zero (no linear terms in the exponent of the trivariate density). The means of Y and Z are therefore zero, and the covariance matrix of Y and Z is

$$
\begin{array}{ll}
11 / 43 & -5 / 43 \\
-5 / 43 & 14 / 43
\end{array}
$$

The inverse of this covariance matrx is
14/3 $\quad 5 / 3$
5/3 11/3
The Y, Z joint density is therefore of the form

$$
C \exp \left(-0.5\left\{14 y^{2} / 3+10 y z / 3+11 z^{2} / 3\right\}\right)
$$

where

$$
C=\frac{1}{2 \pi \sqrt{1-\rho_{Y, Z}^{2}}}=0.1739
$$

17. Let random variables X, Y be jointly continuously distributed in the square

$$
\{(x, y): 0 \leq x \leq 3 ; 0 \leq y \leq 3\}
$$

Suppose their joint CDF satisfies

$$
\begin{aligned}
F_{X, Y}(1,1) & =1 / 81 \\
F_{X, Y}(2,1) & =4 / 81 \\
F_{X, Y}(3,1) & =1 / 9 \\
F_{X, Y}(1,2) & =4 / 81 \\
F_{X, Y}(2,2) & =16 / 81 \\
F_{X, Y}(3,2) & =4 / 9 \\
F_{X, Y}(1,3) & =1 / 9 \\
F_{X, Y}(2,3) & =4 / 9
\end{aligned}
$$

Compute

$$
P[(X, Y) \in R]
$$

where R is the cross-shaped region in the first quadrant of the xy-plane given by

$$
R=\{(x, y): 0 \leq x \leq 3 ; 1 \leq y \leq 2\} \cup\{(x, y): 1 \leq x \leq 2 ; \quad 0 \leq y \leq 3\}
$$

(Hint: Partition R into 3 rectangular pieces and find the prob (X, Y) belongs to each piece.)
Solution. Abbreviate $F_{X, Y}(x, y)$ as $F(x, y)$. For the rectangle (square) with four corners

$$
(1,1),(1,2),(0,1),(0,2)
$$

the prob (X, Y) falls inside is

$$
F(1,2)+F(0,1)-F(1,1)-F(0,2)=3 / 81
$$

For the rectangle with four corners

$$
(2,0),(2,3),(1,3),(1,0)
$$

the prob (X, Y) falls inside is

$$
F(2,3)+F(1,0)-F(2,0)-F(1,3)=1 / 3 .
$$

For the rectangle (square) with four corners

$$
(3,1),(3,2),(2,2),(2,1)
$$

the prob (X, Y) falls inside is

$$
F(3,2)+F(2,1)-F(3,1)-F(2,2)=15 / 81 .
$$

Therefore, the prob (X, Y) falls in the union of these 3 rectangles is

$$
(3 / 81)+(1 / 3)+(15 / 81)=5 / 9
$$

18. Problem 5.6.7, page 241, of your textbook.

Solution. The pairs $\left(Y_{1}, Y_{2}\right)$ and $\left(Y_{3}, Y_{4}\right)$ have the same probability distribution; they are also independent pairs. Therefore the mean vector of $\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)$ will have the form
$\mathrm{a} b \mathrm{a} b$
where a, b are the means of Y_{1}, Y_{2}, respectively, and the covariance matrix of $\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)$ will have the form
c d 00
efoo
$00 \mathrm{c} d$
00 ef
where
c d
ef
is the covariance matrix of $\left(Y_{1}, Y_{2}\right)$.
By factorization, $\left(Y_{1}, Y_{2}\right)$ has joint PDF equal to 2 over the region

$$
\left\{0 \leq y_{1} \leq y_{2} \leq 1\right\}
$$

and so

$$
\begin{aligned}
E\left[Y_{1}\right] & =\int_{0}^{1} \int_{y_{1}}^{1} y_{1}(2) d y_{2} d y_{1}=1 / 3 \\
E\left[Y_{2}\right] & =\int_{0}^{1} \int_{y_{1}}^{1} y_{2}(2) d y_{2} d y_{1}=2 / 3 \\
E\left[Y_{1} Y_{2}\right] & =\int_{0}^{1} \int_{y_{1}}^{1} y_{1} y_{2}(2) d y_{2} d y_{1}=1 / 4 \\
\operatorname{Cov}\left(Y_{1}, Y_{2}\right) & =1 / 4-(1 / 3)(2 / 3)=1 / 36 \\
E\left[Y_{1}^{2}\right] & =\int_{0}^{1} \int_{y_{1}}^{1} y_{1}^{2}(2) d y_{2} d y_{1}=1 / 6 \\
E\left[Y_{2}^{2}\right] & =\int_{0}^{1} \int_{y_{1}}^{1} y_{2}^{2}(2) d y_{2} d y_{1}=1 / 2 \\
\operatorname{Var}\left(Y_{1}\right) & =1 / 6-(1 / 3)^{2}=1 / 18 \\
\operatorname{Var}\left(Y_{2}\right) & =1 / 2-(2 / 3)^{2}=1 / 18
\end{aligned}
$$

The mean vector of $\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)$ is therefore

$$
(1 / 3,2 / 3,1 / 3,2 / 3)^{T}
$$

and the covariance matrix is

$1 / 18$	$1 / 36$	0	0
$1 / 36$	$1 / 18$	0	0
0	0	$1 / 18$	$1 / 36$
0	0	$1 / 36$	$1 / 18$

We used the equation

$$
R_{Y}=C_{Y}+\mu_{Y} \mu_{Y}^{T}
$$

to compute the correlation matrix of $\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)$:

$1 / 6$	$1 / 4$	$1 / 9$	$2 / 9$
$1 / 4$	$1 / 2$	$2 / 9$	$4 / 9$
$1 / 9$	$2 / 9$	$1 / 6$	$1 / 4$
$2 / 9$	$4 / 9$	$1 / 4$	$1 / 2$

