
EE 3025 Dr. Kie�er11 Re 11:Mean-Square Estimation/Random ProessIntrodutionDiretions: Your instrutor will spend the the �rst 40 minutes of the reitation periodworking some review problems and going over one or more Matlab experiments in the fol-lowing. During the last 10 minutes of reitation, your protor will give you a \Lab Form"that your reitation team ompletes, signs, and turns in. See the last page for an indiationof what you will be asked to do on the Lab Form.Due to time limitations, only a part of the following an be overed during the reitationperiod. However, you might want in the future to try some of the unovered experiments onyour own. They ould give skills useful on some future homework problems and ould lendinsight into your understanding of the ourse from an experimental point of view.This Week's Topis.� Straight Line Reeiver Versus Correlation Reeiver� Least Squares Straight Line Fitting� Realizations of Random Proesses� 1-D/2-D Cross-Setions of a Proess� Introdution to Poisson Proess11.1 Exp 1: Straight Line Reeiver Versus Correlation ReeiverIn the Leture 21 Notes, the orrelation reeiver is developed, and you did a little bit withit in a previous lab report. In Setion 24.2 of the Leture 24 Notes, the straight line reeiveris developed. It provides a smaller mean square estimation error performane than theorrelation reeiver. This fat an be demonstrated with Matlab simulations, and we willlead you toward this in the present experiment.Suppose in the blok diagramX ! hannel ! Y ! reeiver ! X̂ = AY +Bthe estimator is the straight-line reeiver, whih is the reeiver of the form X̂ = AY +B whihminimizes mean-square estimation error E[(X� X̂)2℄ among all reeivers of the straight lineform. Mean-square estimation theory tells us that there are two ways to �nd the onstantsA and B:Method 1: A = �X;Y �X=�YB = �X � A�Y1



Method 2: Solve AE[Y 2℄ +BE[Y ℄ = E[XY ℄AE[Y ℄ +B = E[X℄Whihever way you solve the problem, you an solve the problem if you know the vetor ofmeans " �X�Y #along with the ovariane matrix " �2X �X;Y�X;Y �2Y # :Example 1. Let the vetor of means be" �X�Y # = " �12:5 #and let the ovariane matrix be" �2X �X;Y�X;Y �2Y # = " 5 �2�2 7 # :Use Method 1 to �nd the optimum hoie of A;B in the straight line estimator X̂ = AY +B.Example 2. For the same (X; Y ) as in Example 1, now use Method 2 to �nd the optimumhoie of A;B in the straight line estimator X̂ = AY +B. (Write the system of two equationsin Method 2 in matrix form, and then use the inverse of the 2� 2 oeÆient matrix to solvethe system.) Obviously, you should get the same answers for A;B as you got in Example 2.Example 3. The straight line reeiver is better than the orrelation reeiver in the follow-ing sense: it yields mean square estimation error E[(X� X̂)2℄ less than or equal to the meansquare estimation error yielded by the orrelation reeiver X̂ = CY . In this example, youobtain Matlab veri�ation of this fat. In a future leture or in the lass notes, I will provethat the mean square estimation error for the orrelation reeiver is given by the formulaorr reeiver estimation error = E[X2℄ 1� E[XY ℄2E[X2℄E[Y 2℄! (1)I will also prove that the mean square estimation error E[(X � X̂)2℄ for the straight linereeiver is given by the formulastraight line reeiver estimation error = �2X  1� Cov(X; Y )2�2X�2Y ! (2)Run the Matlab sript: 2



x=randn(1,50000)+1;z=2*randn(1,50000)+2;y=x+z;You have now stored in Matlab memory a vetor x of 50000 simulated values of a randomvariable X and a vetor y of 50000 simulated values of a random variable Y . The randompair (X; Y ) may be viewed as the random input and output, respetively, from a Gaussianadditive noise hannel. Use the vetors x,y to obtain estimates of the two �gures (1)-(2).Your instrutor will give you some hints on obtaining the estimates. (For example,mean(x.^2)estimates E[X2℄, and var(x) estimates �2X .) See if your estimate for (2) is less than yourestimate for (1). Do the experiment again to see if your estimates \hold true". Now pik adi�erent orrelated random pair (X; Y ) that you an do the experiment on. (Hint: In theMatlab sript above for generating vetors x,y, replae eah \randn" by \rand".)11.2 Exp 2: Least Squares Straight Line Fitting\Least Squares straight line �tting to data" is something you typially do in a freshman orsophomore physis lab: you plot a bunh of (x; y) data points that you obtain from someexperiment and then you try to pass a straight line through these points. It is interestingto note that the theory of straight line reeivers gives us a mehanism for solving the \LeastSquares straight line �tting" problem. You will beome aware of this fat via this experiment.Let n be a positive integer. Suppose we are given a vetor of n observations x = (xi :i = 1; 2; � � � ; n) and a vetor of n observations y = (yi : i = 1; 2; � � � ; n). We will all (xi) the\x-data" and we will all (yi) the \y-data." In many siene and engineering appliationsyou have to �nd a least-squares straight-line �t of the y-data to the x-data. This means you�nd a straight line x = Ay +B suh thatnXi=1(xi � fAyi +Bg)2is a minimum. Taking the partial derivatives with respet to A and B and setting themequal to zero, we see that A and B are found by solving the following equations (written inMatlab syntax): A �mean(y:^2) +B �mean(y) = mean(x: � y)A �mean(y) +B = mean(x) (3)� Example 4. Run the following Matlab ode in order to store in Matlab memory a datavetor x and a data vetor y, eah onsisting of 10000 samples:u=randn(1,10000);v=randn(1,10000);x=u-3*v;y=2*u+v; 3



Now run some more lines of Matlab ode that will ompute the onstants A;B suhthat the straight line x = Ay+ b is the best mean-square straight line �t of the y-datagiven by y to the x-data given by x.� Example 5. Let U; V be independent standard Gaussian RV's. Let X; Y be the depen-dent RV's de�ned by X = U � 3VY = 2U + VLet X̂ = AY +B be the minimum least-squares linear estimator ofX based on Y . Findapproximations to A and to B using Matlab. Hint: With x and y the pseudorandomvetors generated in Example 4, argue that the solutions A;B to the system (3) areapproximately the same as the solutions toAE[Y 2℄ +BE[Y ℄ = E[XY ℄AE[Y ℄ +B = E[X℄11.3 Exp 3: Realizations of Random ProessesIf (Xn : n = 1; 2; 3; � � �) is a disrete-time random proess (DTRP), and you observe thatthe omponent RV Xn takes the value xn for eah n, then the DT signal xn; n � 0, is arealization of the DTRP. Similarly, if (X(t) : t � 0) is a ontinuous-time random proess(CTRP), and you observe that the omponent RV X(t) takes the value x(t) for eah t, thenthe CT signal x(t); t � 0, is a realization of the CTRP. In this experiment, you plot somerealizations of random proesses in order to get an idea of what the realizations look like.� Example 6. The following Matlab ode plots four di�erent realizations of the Bernoullioin-ip proess (Xn : n = 1; 2; 3; � � �), plotted from n = 1 to n = 50 only. (This is theproess whih at time n generates �1 depending on whether n-th ip of fair oin isheads or tails.)u=rand(1,50);x1=(u>1/2)-(u<=1/2);subplot(2,2,1)bar(1:50,x1,.05)u=rand(1,50);x2=(u>1/2)-(u<=1/2);subplot(2,2,2)bar(1:50,x2,.05)u=rand(1,50);x3=(u>1/2)-(u<=1/2);subplot(2,2,3)bar(1:50,x3,.05)u=rand(1,50);x4=(u>1/2)-(u<=1/2);subplot(2,2,4)bar(1:50,x4,.05) 4



Suppose you were able to plot a realization of the Bernoulli proess from n = 1 ton = 10000. About how many of the lines in the plot would be pointing up and howmany pointing down?� Example 7. In this example, you plot some realizations of the random walk proess(Yn : n = 0; 1; 2; � � �) (i.e., the drunkard's walk) from n = 0 to n = 20. (This is theproess you get by passing the Bernoulli proess through a disrete-time integrator.)u=rand(1,20);x=(u>1/2)-(u<=1/2);y1=[0 umsum(x)℄;subplot(2,2,1)plot(0:length(y1)-1,y1)u=rand(1,20);x=(u>1/2)-(u<=1/2);y2=[0 umsum(x)℄;subplot(2,2,2)plot(0:length(y2)-1,y2)u=rand(1,20);x=(u>1/2)-(u<=1/2);y3=[0 umsum(x)℄;subplot(2,2,3)plot(0:length(y3)-1,y3)u=rand(1,20);x=(u>1/2)-(u<=1/2);y4=[0 umsum(x)℄;subplot(2,2,4)plot(0:length(y4)-1,y4)Examine one of the realizations. Desribe the motion of the drunkard based on thisrealization. (From one time instant to the next, the drunkard either takes one stepforward or one step bakward along a horizontal axis|start the drunkard at the origin.)� Example 8. In this example you plot some realizations of the CT random sinusoidproess X(t) = A sin(2�t+�); t � 0where �, the \random phase", is uniformly distributed between 0 and 2�, and whereA, the \random amplitude", is a standard gaussian RV. The plots are done only fromt = 0 to t = 3 (three periods).t=0:.01:3;x1=randn(1,1)*sin(2*pi*t+2*pi*rand(1,1));subplot(2,2,1)plot(t,x1)x2=randn(1,1)*sin(2*pi*t+2*pi*rand(1,1));5



subplot(2,2,2)plot(t,x2)x3=randn(1,1)*sin(2*pi*t+2*pi*rand(1,1));subplot(2,2,3)plot(t,x3)x4=randn(1,1)*sin(2*pi*t+2*pi*rand(1,1));subplot(2,2,4)plot(t,x4)Is the amplitude of the realization more likely to be between 0 and 1 or more likely tobe between 1 and 2? Generate a few more realizations until you feel you are ready toanswer this question.11.4 Exp 4: 1-D/2-D Cross-Setions of a ProessLet X(t) be a random proess assoiated with a random experiment. Fix any time t0.Suppose you were to exeute the following two steps:Step 1: Perform the experiment and observe the realization signal x(t) that you get.Step 2: Sample x(t) at time t = t0, obtaining the value x(t0).As the result of these two steps, you obtain the value of a random variable whih we denoteby X(t0). This RV X(t0) is alled a \1-D ross-setion" of the proess X(t). If you samplethe proess at di�erent times, then you get di�erent 1-D ross-setions.Example 9. This example teahes you that 1-D ross-setions taken at di�erent timesan have quite a di�erent statistial harater. Perform the following steps:(a) Run the lines of ode:t=0:.01:3;a=2*floor(2*rand(1,2))-1;x=a(1)*t+a(2);plot(t,x)You will see the plot of a realization of a proess X(t) on your sreen.(b) Run the lines of ode in (a) 10 di�erent times. On eah run, look at the plot of therealization that you get and using your eyeball, sample the realization at time t = 1.Write down the sequene of 10 sample values that you get in your reitation notebook.These are 10 simulated values of the 1-D ross-setion random variable X(1).() Repeat (b), now sampling eah of your 10 realizations at time t = 2. The 10 samplevalues in your notebook now simulate 10 values of the 1-D ross-setion random variableX(2). 6



(d) Compare the results from (a) and (b) that you wrote down in your notebook. Do theross-setions X(1) and X(2) seem to have di�erent PMF's? Do you have any ideawhat these PMF's might be?For a given random proess X(t), suppose you now �x two times t0; t1, with t0 < t1.Then, the pair of RV's (X(t0); X(t1)) is alled a 2-D ross-setion of proess X(t). You anobserve a value of (X(t0); X(t1)) by (i) performing the underlying experiment and seeingwhat realization results, and then (ii) sampling that realization at times t0, t1, respetively.If these samples are a; b, respetively, then the point (a; b) is one observed value of the 2-D ross-setion (X(t0); X(t1)). Performing the experiment repeatedly, you will get furtherobserved values (a; b) of (X(t0); X(t1)).Example 10. Run the sript in part(a) of Example 9 ten times. Eah time, sample therealization you see on your sreen at times t = 1 and t = 2. This will give you 10 (a; b)points in your notebook, whih are simulated values of the 2-D ross-setion (X(1); X(2)).If you obtained thousands of (a; b) points in this way, you ould average up the a � b valuesto estimate the orrelation E[X(t0)X(t1)℄ between the proess and time t0 and time t1. Wewill use this orrelation estimation tehnique next week (where we will all this method\spae-averaging" or \averaging aross ross-setions"). If you have more time, estimateE[X(1)X(2)℄ for the proess of Examples 9-10 in this way.11.5 Exp 5: Poisson Proess IntrodutionThe Poisson proess (also alled Poisson arrival proess) is used to model arrivals in aqueueing system. In this experiment, we look at some realizations of a Poisson proess andonlude various things from them.Example 11. Let us �rst onsider a Poisson proess for whih there is one arrival perseond, on average. We an simulate the �rst six arrival times via the Matlab ode:t=umsum(-log(rand(1,6)));Let these six arrival times be t1; t2; t3; t4; t5; t6; these are the entries of the vetor t. Considerthe step funtion de�ned s(t) over the time interval 0 � t � t6 de�ned as follows: s(t) is equalto 0 in the time interval 0 � t < t1, is equal to 1 in the time interval t1 � t < t2, 2 in the timeinterval t2 � t < t3, et., ending up equal to 5 in the time interval t5 � t � t6. If we wereto onsider more and more arrivals until we had in�nitely many, then the step funtion s(t)would keep getting extended until the result would be a realization of the Poisson proess.Plot s(t) using Matlab, by running the following Matlab ode:t=umsum(-log(rand(1,6)));t=round(10^3*t)/10^3; %rounds arrival time to 3 deimal plaesdelta=.001;x1=0:delta:t(1)-delta; y1=0*ones(1,length(x1));x2=t(1):delta:t(2)-delta; y2=1*ones(1,length(x2));x3=t(2):delta:t(3)-delta; y3=2*ones(1,length(x3));x4=t(3):delta:t(4)-delta; y4=3*ones(1,length(x4));7



x5=t(4):delta:t(5)-delta; y5=4*ones(1,length(x5));x6=t(5):delta:t(6)-delta; y6=5*ones(1,length(x6));plot([x1 x2 x3 x4 x5 x6℄,[y1 y2 y3 y4 y5 y6℄)axis([0 t(6) 0 6℄)xlabel('time axis t')ylabel('number of arrivals s(t) up through time t')title('plot of realization of Poisson proess')The resulting plot you see on your sreen is a realization s(t) of the Poisson proess. Doesit look a little bit like the plot above?
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Look at your realization s(t), and answer the following questions:� At what times do eah of the �rst 6 arrivals our?� What is the length of time between the �rst arrival and the seond arrival, or betweenthe seond arrival and the fourth arrival?� What does the arrival rate seem to be in number of arrivals per seond (approximately)?Re-run the preeding lines of ode repeatedly to get other realizations. They should allgive you roughly 6 arrivals in the �rst 6 seonds. But of ourse no two realizations will bethe same. 8



Example 12. Suppose you now want the arrival rate of the Poisson proess to be twoarrivals per seond. Then, you replae the �rst line of the Matlab sript of Example 11 witht=umsum(-log(rand(1,6))/2);Run the sript of Example 11 after making this hange and then look at the realization ofthe Poisson proess that you see plotted on your Matlab sreen. It should look a little bitlike the following plot:
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You an re-run the sript to get still further realizations. On average, you will have 6 arrivalsin 3 seonds, an arrival rate of 2 arrivals per seond.
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EE 3025 S2007 Reitation 11 Lab FormName and Student Number of Team Member 1:Name and Student Number of Team Member 2:Name and Student Number of Team Member 3:************************************************************************************Study Experiment 1. You will be doing something in onnetion with the Experiment 1framework.
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