
EE 3025 Dr. Kie�er13 Re 13: Misellaneous Random Proess TopisDiretions: Your instrutor will spend the the �rst 40 minutes of the reitation periodworking some review problems and going over one or more Matlab experiments in the fol-lowing. During the last 10 minutes of reitation, your protor will give you a \Lab Form"that your reitation team ompletes, signs, and turns in. See the last page for an indiationof what you will be asked to do on the Lab Form.Due to time limitations, only a part of the following an be overed during the reitationperiod. However, you might want in the future to try some of the unovered experiments onyour own. They ould give skills useful on some future homework problems and ould lendinsight into your understanding of the ourse from an experimental point of view.This Week's Topis.� Levinsion-Durbin Preditor Design Algorithm� Simulation/Stability of Single-Server Queue� Power Computation Via Power Spetral Density� Introdution to Spetral Fatorization� Gaussian White Noise/Brownian Motion Realizations13.1 Exp 1: Levinson-Durbin Preditor Design AlgorithmIn Reitation 12, you learned how to design a linear preditor of any order, with emphasis onthe �rst, seond, and third order preditor. On Homework 10, you separately designed thebest �rst order preditor, the best seond order preditor, and the best third order preditorfor a ertain WSS disrete-time proess Xn. (\Best" preditor means that the preditorahieved minimum mean square predition error.)In this experiment, I have you play with the so-alled Levinson-Durbin Algorithm, whihmiraulously, for any positive integer k, simultaneously designs all j-th order linear preditorsfor 1 � j � k, given the autoorrelation funtion of a WSS proess Xn.Example 1. In Problem 2 on Homework 10, you designed preditors for a WSS proessXn whose autoorrelation funtion satis�esRX(�) = 8>>><>>>: 8; � = 0�4; � = �11; � = �20; elsewhereRun the following Matlab sript, whih is an implementation of the Levinson-Durbin algo-rithm for the above autoorrelation funtion:1



learRX=[8 -4 1 zeros(1,50)℄; %enter in enough autoorr valuesk=6; %enter in max order of preditor you wantRX = toeplitz(RX(1:k+1)); %reates orrelation matrixd(1)=RX(1,1);A(1,1)=RX(1,2)/d(1);for i=1:k-1d(i+1)=d(i)*(1-A(i,i)^2);u=RX(1,i+1:-1:2);v=A(i,1:i);A(i+1,i+1)=(RX(1,i+2)-u*v')/d(i+1);for j=1:iA(i+1,j)=A(i,j)-A(i+1,i+1)*A(i,i+1-j);endendAWhat you see on your omputer sreen is a 6 � 6 matrix. The �rst i entries in row i(i = 1; 2; 3; 4; 5; 6) are the preditor oeÆients for the i-th order preditor. If you lookat the �rst three rows, these should oinide with the preditor oeÆients given in thesolutions to Problem 2, Homework 10, on the Web, for the �rst, seond, and third orderpreditors. If you ould run the Levinson-Durbin algorithm for k = 1, then you woulddisover the following as you look at the generated matrix whose rows yield the preditoroeÆients for every single �nite order linear preditor: as you go down eah olumn, thepreditor oeÆients onverge. What these olumns onverge to is the \IIR preditor", thepreditor that uses all of the previous observations to predit what is going to happen next.This would be the very best of all linear preditors, regardless of order.Example 2. Now let the autoorrelation funtion beRX(�) = 8>>>>>><>>>>>>: 12; � = 08; � = �13; � = �21; � = �30; elsewhereUse the Levinson-Durbin sript in Example 1 to �nd the preditors of order 1 thru 7. (In theseond line of the sript, you enter an RX vetor whih gives at least the �rst eight entriesof the autoorrelation funtion; in the third line of the sript, you enter the maximum orderk=7 that you are allowing. In general, in Line 2, you need to enter in the vetor of k + 1entries RX(0); RX(1); � � � ; RX(k)if your maximum preditor order is k.Example 3. Now use the Levinson-Durbin algorithm to generate the preditors of the�rst few orders for the autoorrelation funtionRX(�) = 10(1=2)j� j:2



Do the rows of the generated matrix look kind of strange? What do you think is happeninghere? (Note: If you are not seeing something \strange", you possibly did something wrong,and you should ask your reitation instrutor to help you.)13.2 Exp 2: Simulation/Stability of Single-Server QueueWe are going to examine the \single-server queueing system model". You an oneptualizethis system via the blok diagramarrivals ! server ! departuresTo help you �x the ideas in your mind, you an think of think of the queueing system in thefollowing way:� Think of the \arrivals" as message pakets arriving at di�erent random times. Thesearrival times are modeled by a Poisson proess with an averate rate of � arrivals perseond. Eah message paket, upon arrival to the system, goes to the end of a queue,and is not proessed by the system server until it reahes the beginning of the queue.� Think of the \server" as an e-mail server or router whih reeives eah message paketand then proesses it when the paket reahes the front of the queue. The server isassumed to proess pakets at the rate of � pakets per seond.� Think of the \departures" as the message pakets leaving the system at various timesafter being proessed by the server.Eah message paket has an \arrival time" and a \departure time". These two times arerelated by the formula:departure time = (arrival time) + (waiting time) + (servie time)The \waiting time" is the length of time that it takes for the paket to move to the frontof the queue, and the \servie time" is the length of time that it takes for the paket to beproessed by the server.We want to use Matlab to simulate arrival times, waiting times, servie times, and de-parture times. Here is how we an do it:� The �rst paket arrives at timearrivaltime(1)=-log(rand(1,1))/lambda;� The waiting time for the �rst paket is thenwaitingtime(1)=0;This is beause the queue is empty when the �rst ustomer arrives.� The servie time for the �rst paket is 3



servietime(1)=-log(rand(1,1))/mu;� The departure time for the �rst paket is thereforedeparturetime(1)=arrivaltime(1)+waitingtime(1)+servietime(1);� The arrival time for the seond paket is omputed as:interarrivaltime(1)=-log(rand(1,1))/lambda; %time between pakets 1 and 2arrivaltime(2)=arrivaltime(1)+interarrivaltime(1);� The waiting time, servie time, and departure time for the seond paket are:waitingtime(2)=max(0,waitingtime(1)+servietime(1)-interarrivaltime(1));servietime(2)=-log(rand(1,1))/mu;departuretime(2)=arrivaltime(2)+waitingtime(2)+servietime(2);� The arrival time, waiting time, servie time, and departure time for the third paketwould then be Matlab simulated as follows:interarrivaltime(2)=-log(rand(1,1))/lambda;arrivaltime(3)=arrivaltime(2)+interarrivaltime(2);waitingtime(3)=max(0,waitingtime(2)+servietime(2)-interarrivaltime(2));servietime(3)=-log(rand(1,1))/mu;departuretime(3)=arrivaltime(3)+waitingtime(3)+servietime(3);
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Continuing in this way, we an simulate the arrival time, servie time, waiting time, anddeparture time of eah message paket. Using the preeding �gure, one an show that thewaiting times are generated reursively by the following equation in Matlab syntax:waitingtime(i+1)=max(0,waitingtime(i)+servietime(i)-interarrivaltime(i));For the senario in the �gure, it is lear the paket i+ 1's waiting time is4



waitingtime(i)+servietime(i)-interarrivaltime(i)On the other hand, the departure of paket i might our before paket i+1 arrives. In thisase, the waiting time for paket i + 1 is zero andwaitingtime(i)+servietime(i)-interarrivaltime(i) < 0so thatwaitingtime(i+1)=max(0,waitingtime(i)+servietime(i)-interarrivaltime(i));gives the orret waiting time in all ases.Stability of the Queue. Does the expeted length of the queue remain bounded astime t goes to in�nity? This is alled a stable queue. Or, does the expeted length of thequeue blow up as t!1? This is an unstable queue. Using mathematis that is beyond thesope of EE 3025, one an establish the following result onerning stability:Case 1: Stable Queue. The single-server queueing system is stable if � < � (that is, thearrival rate is less than the servie rate).Case 2: Unstable Queue. The single-server queueing system is unstable if � � �.We are now going to do a Matlab simulation that will suggest to you that the preedingresult is true. Our simulation will involve two stairase funtions alled In(t) and Out(t).The funtion In(t) is the realization of the Poisson arrival proess: the value of In(t) ateah time t � 0 is the number of arrivals that have taken plae up to and inluding time t.If you look bak at Experiment 5 of Reitation 11, you will see Matlab ode for simulatingand plotting the funtion In(t). At eah time t � 0, the funtion Out(t) is de�ned tobe the number of departures from the queueing system that have taken plae up to andinluding time t. When you plot the funtion In(t) and the funtion Out(t) on the sameset of oordinate axes, you will see that the stairase given by In(t) lies above the stairasegiven by Out(t), that is, In(t) � Out(t)It is the gap between these two stairase plots that determines stability. The di�erene isIn(t)-Out(t)whih has the interpretation of being the length of the queue as a funtion of time t. Youeither have:Case 1: Stable Queue. E[In(t)-Out(t)℄ remains bounded as t!1. (That is, on aver-age, the gap between the two plots an only beome so large and no larger. Equiva-lently, the expeted length of the queue is leveling o� with time.)Case 2: Unstable Queue. E[In(t)-Out(t)℄ blows up as t ! 1. (That is, on average,the gap between the two plots is getting bigger and bigger with time. Equivalently,the expeted length of the queue is blowing up with time.)5



We will �rst do a simulation of the queueing system with � < � to see that Case 1 holds,and then we will do a simulation with � � � to see that Case 2 holds.Example 4. In this example, we take the arrival rate to be � = 1 arrivals/seond and theservie rate to be � = 2 pakets/seond. Sine � < �, our queueing system will be stable.Running the following Matlab sript, you simulate the queueing system from time t = 0 totime t = 10, and obtain plots of In(t) and Out(t) on the same set of axes:lambda=1; mu=2;T=10;n=1000;interarrivaltimes=-log(rand(1,n))/lambda;servietimes=-log(rand(1,n))/mu;w(1)=0;for i=2:n;w(i)=max(0,-interarrivaltimes(i)+servietimes(i-1)+w(i-1)); endarrivaltimes=umsum(interarrivaltimes);waitingtimes=w;departuretimes=arrivaltimes + waitingtimes + servietimes;t=0:.01:T;for i=1:length(t)ount1(i)=max(round(100*(departuretimes-t(i)))==0);ount2(i)=max(round(100*(arrivaltimes-t(i)))==0); endOut=umsum(ount1);In=umsum(ount2);plot(t,In,t,Out)Looking at the gap between the two stairase funtions in the preeding �gure, we see thatat any time, the length of the queue appears to either 0, 1, or 2. The length of the queuedoes not appear to be blowing up, and so the system appears to be stable. To make theresult more onvining, we obtained the following In(t) versus Out(t) plot when the timeaxis is expanded to go from t = 0 to t = 100 (hange the seond line of the Matlab sript toT=100;):
Example 5. In this example, we examine the unstable queue in whih the arrival rate is� = 2 and the servie rate is � = 1. We simply hanged the �rst line of ode in the Example4 Matlab sript to obtain the plots of In(t) and Out(t):

6
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upper plot is In(t), lower plot is Out(t) (arrival rate = 1, service rate = 2)

The two plots learly seem to be diverging from one another. This does indeed suggest thatwe have an unstable queue.13.3 Exp 3: Power Computation Via Power Spetral DensityLet Xn be a disrete-time WSS proess. The power spetral density SX(f) of this proess isthe disrete-time Fourier transform of the autoorrelation funtion RX(�). The power PXgenerated by the X proess an be omputed as follows:PX = Z 10 SX(f)df: (1)The following example illustrates this fat.Example 6. Let Zn be the Gaussian white noise proess with unit variane. Let Xn bethe proess de�ned by �ltering the random signal Zn as follows:Xn = (0:5)Xn�1 + (0:5)Zn (2)You are going to ompute the power PX generated by the X proess using SX(f). First youhave to �nd SX(f). In Chapter 11, you learn thatSX(f) = jH(f)j2SZ(f) = jH(f)j2;7
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upper plot is In(t), lower plot is Out(t) (arrival rate = 1, service rate = 2)

where H(f) is the frequeny response funtion of the �lter given by (2), and you are usingthe fat that SZ(f) = 1 for all frequenies f . Fourier transforming the equation (2), you getthe equation X(f) = (0:5) exp(�j2�f)X(f) + (0:5)Z(f):� Use penil and paper to argue that the frequeny response H(f) = X(f)=Z(f) is givenby H(f) = 12� exp(�j2�f) :� Use penil and paper to do the algebrai manipulations involved in omputing jH(f)j2,showing that SX(f) = jH(f)j2 = 15� 4 os(2�f) :� Run the following Matlab ode to ompute PX aording to the formula (1):syms fPX=eval(int(1/(5-4*os(2*pi*f)),f,0,1))Here is a way you an hek your work. In the ourse of overing Chapter 11, we will showthat sine the Z proess is white noise, then we have the following formula relating PX and8
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upper plot is In(t), lower plot is Out(t) (arrival rate = 2, service rate = 1)

PZ : PX = PZ [ 1Xn=�1h[n℄2℄; (3)where h[n℄ is the impulse response of the �lter given by (2). (Warning: Don't use thisformula unless Z is white!) In our ase here, h[n℄ takes the formh[n℄ = A(1=2)nu[n℄for some onstant A. What is A? (You an �nd out from studying equation (2).) In equation(3), sum the geometri series on the right hand side, and use the fat that PZ = 1 to deduewhat the value of PX is. Did you obtain the same value for PX as found using formula (1)?13.4 Exp 4: Introdution to Spetral FatorizationWe onsider the simplest possible �lter design problems that an be solved by a tehniquealled spetral fatorization. Let Zn be a disrete-time white noise proess with unit variane.Suppose we �lter the random signal Zn using a disrete-time ausal stable linear time-invariant �lter with transfer funtion H(z):Zn ! H(z) ! Xn9



As indiated in the blok diagram, the �lter output is WSS random signal Xn. We wantto design the �lter (that is, �nd H(z)) so that the autoorrelation funtion RX(�) is thefollowing: RX(�) = 8><>: 5; � = 02; � = �10; elsewhereI will guide you through the following steps for aomplishing this goal.Step 1: We take the z transform of RX(�). We get SX(z), the power spetral density of Xproess in z domain: SX(z) = 5 + 2z + 2z�1:Do you understand that the preeding equation gives the z transform of RX(�)? If youdon't understand, ask your reitation instrutor.Step 2: This step is a \root �nding" step. Before I tell you what to do, you need somebakground. From a result we will get in Chapter 11, we haveSX(z) = SZ(z)H(z)H(z�1):In our ase, sine the input is white, we have SZ(z) = 1, and this equation beomes5 + 2z + 2z�1 = H(z)H(z�1):Let us attempt a solution of this equation of the form H(z) = a + bz�1 for someunknown real onstants a; b. We then have5 + 2z + 2z�1 = (a+ bz�1)(a + bz): (4)For Step 2, write the left side as 2z2 + 5z + 2z ;(by fatoring out a z�1), and then �nd the two roots of the polynomial 2z2 + 5z + 2by exeuting the Matlab line roots([2 5 2℄)Look at the two roots you see on your omputer sreen. Are they real? Are theyreiproals of one another?Step 3: Pik either root from Step 2 and all it r. Write the equation (4) as5 + 2z + 2z�1 = (1� rz�1)(1� rz);where  is an unknown positive onstant. For Step 3, multiply out the right side of thepreeding equation and ompare it to the left side in order to �gure out what  is.10



Step 4: Take your �lter transfer funtion asH(z) = p(1� rz�1):Example 7. Suppose we now want to design the �lter transfer funtion H(z) so that the�lter output power spetral density isSX(f) = 17� 4 os(2�f) :Design H(z) as a ausal �lter so that this will be true. I will get you started. In z domain,os(2�f) beomesos(2�f) = (1=2)[exp(2�fj) + exp(�2�fj) = (1=2)[z + z�1℄:Therefore, the power spetral density in z domain isSX(z) = 17� 2z � 2z�1 :Fator 7� 2z� 2z�1 aording to the method in Steps 2-3 above. You will obtain somethingof the form 7� 2z � 2z�1 = (1� rz�1)(1� rz):Then take H(z) = 1p(1� rz�1) :In Step 2, the \root �nding step", you will have two hoies for the root r. Be sure to hoosethe one that makes the �lter stable.13.5 Exp 5:Gaussian White Noise/Brownian Motion RealizationsIn this experiment, you see how to simulate realizations of the ontinuous-time Gaussianwhite noise proess (GWN proess), and the Brownian motion proess (also alled Wienerproess).The GWN proess X(t) satis�es RX(�) = AÆ(�) (5)for some positive onstant A. Beause the delta funtion blows up at � = 0, the GWNproess has in�nite power. Therefore, the GWN proess is not really physially realizable.But, it an be approximated (beause a delta funtion an be approximated as a retangularpulse with very high amplitude and very short duration). The following example uses Matlabto reate plots of realizations of a proess that is approximately GWN.Example 8. In this example, you simulate realizations of the GWN proess X(t) withautoorrelation funtion (5). The basi idea behind simulating a realization of X(t) for0 � t � T (where T is a positive integer) goes as follows: Pik a large positive integer n, andform a vetor x of n + 1 independent pseudorandom samples from a gaussian distributionwith mean 0 and variane A=�, where � = T=n. Then, form a \time axis", whih is a vetort onsisting of n+ 1 equally spaed entries from 0 to T inlusively; exeuting the ommand\plot(t,x)" then gives the desired GWN realization. Run the ode:11



A=1; T=10; n=10000;Delta=T/n;;t=0:Delta:T;white_noise=sqrt(A)*Delta^(-0.5)*randn(1,length(t));plot(t,white_noise)title('Gaussian white noise realization')If you pass GWN through an integrator, you obtain the Brownian motion proess:GWN ! Z t0 ! X(t) = Brownian motion proessEven though GWN is physially unrealizable, the Brownian motion proess is physiallyrealizable. In fat, the realizations of the Brownian motion proess are ontinuous funtionsof t. The following example allows you to use Matlab to plot realizations of a Brownianmotion proess.Example 9. In obtaining Brownian motion proess from integration of GWN, you anapproximate the ontinuous-time integrator by a disrete-time integrator implemented bythe \umsum" ommand in Matlab. Run the following sript whih will generate the plot ofa Brownian motion proess realization:A=1; T=10; n=10000;Delta=T/n;t=0:Delta:T;x=Delta^(-0.5)*randn(1,n);w=[0 umsum(Delta*x)℄;plot(t,w)title('Brownian motion proess realization')The fator of � in the disrete-time integrator is beauseZ i�(i�1)� x(t)dt � �x(i�):Although Brownian motion proess realizations are ontinuous, they are also nowhere dif-ferentiable! This is why your plot might look �nd of funny. In fat, even if you put therealization urve under a mirosope, it will still look \spiky". (Have you heard of fratals?Brownian motion proess realizations are fratals|they are not 1-D urves but rather havea dimension somewhere between 1-D and 2-D.)The Brownian motion proess is very important for appliations. For example, there isan extension of the Brownian motion proess to 2-D that an be used to solve Laplae'sequation �2V=�x2 + �2V=�y2 = 0in a bounded region of the xy-plane, in whih a boundary ondition is plaed on the boundaryof the region. (To obtain V (x; y) at an interior point (x; y) of the region, you simply start the2-D Brownian motion proess there and let it run until it hits the boundary. The expetedboundary value is equal to V (x; y).) 12



EE 3025 Reitation 13 Lab Form� NAME AND ID NUMBER OF TEAM MEMBER 1:� NAME AND ID NUMBER OF TEAM MEMBER 2:� NAME AND ID NUMBER OF TEAM MEMBER 3:Let Zn be a white noise proess with unit variane. In this report, you �nd �lter oeÆientsA;B so that the �ltering operation Xn = AZn +BZn�1 (6)yields WSS proess Xn satisfyingRX(0) = 6; RX(�1) = 1; RX(�) = 0 elsewhere:(a) The desired A;B must satisfy the equationsA2 +B2 = 6AB = 1Run the following Matlab sript whih �nds a solution for A;B.syms a b[a,b℄ = solve('a^2+b^2=6' , 'a*b=1');A=double(a(1))B=double(b(1))Fill in the blanks for A;B at right (four deimal plaes).(b) Using penil and paper and high shool algebra, verify that(A+Bz�1)(A+Bz) = 6 + z + z�1 (7)Write down your work below (or on the bak if you run out of room).
() You will learn in Chapter 11 of text that the \spetral fatorization" in equation (7)means that the �ltering operation (6) will give us the desired autoorrelation funtionRX(�). Here you do a Matlab simulation to verify this. Run the sript:A = ; B = ; %enter the A,B values you found in (a)n=1000000;z=randn(1,n); %white noise inputs to filterx=A*z(2:n) + B*z(1:n-1); %filter outputsRX0_hat = mean(x.^2)RX1_hat = mean(x(1:n-2).*x(2:n-1))Write down the autoorrelation estimates (four deimal plaes) yielded by Matlab:13


