
EE 3025 Dr. Kie�er14 Reitation 14Diretions: Your instrutor will spend the the �rst 40 minutes of the reitation periodworking some review problems and going over one or more Matlab experiments in the fol-lowing. During the last 10 minutes of reitation, your protor will give you a \Lab Form"that your reitation team ompletes, signs, and turns in. See the last page for an indiationof what you will be asked to do on the Lab Form.Due to time limitations, only a part of the following an be overed during the reitationperiod. However, you might want in the future to try some of the unovered experiments onyour own. They ould give skills useful on some future homework problems and ould lendinsight into your understanding of the ourse from an experimental point of view.This Week's Topis.� Periodogram Method to Estimate Power Spetrum� Bartlett's Method to Estimate Power Spetrum� Appliation to Stok Market Investment� More on Single Server Queue� Review of Bayes Method14.1 Exp 1: Periodogram Method to Estimate Power SpetrumLet (Xn) be a disrete-time ergodi WSS proess whose power spetral density SX(f) is notknown. In order to estimate SX(f), one an use samples of the proess x[1℄; x[2℄; : : : ; x[N ℄measured at times n = 1 through n = N along a realization x[n℄ of the X proess, where Nis large. There are quite a number of e�etive spetrum estimation proedures that an bebased upon these N samples. We disuss the periodogram estimate in this �rst experiment.In Experiment 2, you will look at Bartlett's estimate of the power spetrum (whih typiallygives a better estimate than the periodogram does).The periodogram estimate ŜX(f) of SX(f) is given by the formula:ŜX(f) �= 1N ����� NXk=1x[k℄e�jk2�f �����2 ; �1 < f <1 (1)The periodogram estimate an be easily found using the MATLAB funtion \fft". Justform a vetor x = [x[1℄; x[2℄; : : : ; x[N ℄℄ onsisting of the N samples of the proess. Then theMATLAB operationabs(fft(x)).^2/N
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omputes the right hand side of (1).Example 1. Let (Zn) be Gaussian white noise with unit variane. Let (Xn) be the proessde�ned by �ltering the white noise as follows:Xn = (0:5)Xn�1 + (0:5)Zn (2)The power spetral density SX(f) of the X proess was derived in Experiment 3 of Reitation13. It is SX(f) = 15� 4 os(2�f) : (3)Suppose we do not know the �ltering mehanism given by (2), and therefore we do not knowthe expression for SX(f) given in (3). Instead, we are simply handed a series of onseutivesamples of proess Xn, and must then estimate SX(f) based on these samples.Step 1: In this step, we ran the following MATLAB sript to generate the periodogramestimate of SX(f) based on the samples x[1℄; x[2℄; : : : ; x[4096℄ from a realization x[n℄of (Xn):N=4096;z=randn(1,N);x(1)=0;for i=2:Nx(i)=.5*x(i-1)+.5*z(i);endperiodogram = abs(fft(x)).^2/N;freq = (0:N-1)/N;plot(freq,periodogram)axis([ 0, 1, 0, 6℄)xlabel('frequeny f')ylabel('periodogram power spetrum estimate')The following plot resulted:
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Step 2: In this step, we ran the following sript in order to obtain a plot of the atual SX(f)(3) and its periodogram estimate on the same set of oordinate axes:PSD = (5-4*os(2*pi*freq)).^(-1);plot(freq,periodogram,freq,PSD)axis([ 0, 1, 0, 6℄)xlabel('frequeny f')ylabel('power spetrum value (atual vs. estimated)')title('solid urve=atual power spetrum, spiky urve=periodogram estimate')The following plot resulted:
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solid curve=actual power spectrum, spiky curve=periodogram estimate

The periodogram looks \spiky"; as a onsequene, the periodogram provides a poor estimateof SX(f) in ertain frequeny ranges. The Bartlett estimate in Experiment 2 \smooths out"the spikiness in the periodogram estimate in a lever way, thereby providing better estimationof the power spetrum.14.2 Exp 2: Bartlett's Method to Estimate Power SpetrumLet (Xn) be a DT ergodi WSS proess. In this experiment, you will try two di�erent waysto get an estimate ŜX(f) of the PSD SX(f) of the X proess whih will hopefully improveupon the periodogram estimate obtained in Experiment 1.(i)Spae-Averaging Method: For some large positive integer N , you average up N peri-odograms, eah periodogram omputed from a di�erent realization of proess X.(ii)Bartlett's Method: For some large positive integer N , you average up N periodogramsomputed from disjoint segments of the same realization of proess X.Here are more details onerning Bartlett's method. Given N onseutive samples of a real-ization of the X proess, Bartlett's method partitions these N samples into N2 segments, eahsegment onsisting of N1 onseutive samples (of ourse, N=N1*N2 must hold); a periodogramfor eah segment is omputed, and then the N2 periodograms are averaged to get Bartlett'sPSD estimate.In the examples whih follow, to see how good the power spetrum estimates are, youwill do satter plots of them versus the atual PSD plot.4



� Example 2. Let (Zn) be Gaussian white noise with unit variane. Let (Xn) be theproess obtained by �ltering the white noise as follows:Xn = (0:5)Xn�1 + (0:5)ZnIn this example, you use the spae-averaging method. The estimate of SX(f) willbe obtained by averaging up 32 periodograms from 32 di�erent realizations of the Xproess. (Eah periodogram is omputed from 256 samples.) Run the following Matlabode, whih plots the resulting PSD estimate as a satter plot on the same set of axesas the atual PSD SX(f):learN=256;s=zeros(1,N);for j=1:32z=randn(1,N);x(1)=0;for i=2:Nx(i)=.5*x(i-1)+.5*z(i);endperiodogram=abs(fft(x)).^2/N;s=s+periodogram;endSXhat=s/32;freq=(0:N-1)/N;SX = (5-4*os(2*pi*freq)).^(-1);subplot(2,1,1)plot(freq,SXhat,'+',freq,SX,'*')title('Plot of SX(f) and its spae-averaging estimate')Examine your plot. Does the spae-averaging estimate given by the satter plot seemto be fairly lose to the atual SX(f)?� Example 3. Let X be the same proess used in Example 2. In this example, you useBartlett's method. You average up 32 periodograms, eah periodogram omputed from256 points on the same realization. Your goal is to see whether you get omparable(or better) performane than in Example 2. Run the ode:learN1=256;N2=32;N=N1*N2;z=randn(1,N);x(1)=0;for i=2:Nx(i)=.5*x(i-1)+.5*z(i); 5



ends=zeros(1,N1);for j=1:N2segment=x((j-1)*N1+1:j*N1);periodogram=abs(fft(segment)).^2/N1;s=s+periodogram;endSXhat=s/N2;t=0:N1-1;freq=t/N1;SX = (5-4*os(2*pi*freq)).^(-1);subplot(2,1,2)plot(freq,SXhat,'+',freq,SX,'*')title('Plot of SX(f) and its Bartlett estimate')Compare your plot with the plot in Example 2. Do the two satter plots seem to giveomparable estimates? The two estimation methods use the same number of pointsto form their estimates, and give omparable performane. The di�erene betweenthe two methods resides in the fat that Bartlett's method uses just one realization.Therefore, Bartlett's method is the superior of the two methods.14.3 Exp 3: Appliation to Stok Market InvestmentLet Xn be the prie of a stok (in dollars per share) on day n. We suppose that the Xn'sare independent, identially distributed random variables. At the beginning of eah day, theinvestor invests in this stok and in this stok only as follows:(i) The investor sells all of his shares of the stok and adds the proeeds to his apital.(ii) The investor invests 100p% of his apital in the stok. (p is a �xed parameter that iskept �xed from day to day.)If the investor's initial apital is one dollar, then his/her apital Cn after n days of investment(i.e., at the beginning of day n+ 1) is given by the formula:Cn = nYi=1�pXi+1Xi + 1� p�If n is large, then with probability lose to 1,Cn � exp(n�(p));where �(p) = E[loge �pX2X1 + 1� p�℄ (4)
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The best hoie of p is the one for whih �(p) is a maximum, whih, setting equal to zerothe derivative of the right side of (4), yields:E " X2 �X1pX2 + (1� p)X1# = 0 (5)Let the \Louis Rukeyser strategy" be the best investment strategy whih uses the hoie ofp satisfying equation (5). In this experiment, you simulate the return on your apital frominvestment using the Louis Rukeyser strategy as ompared to the return obtained from moresimple-minded strategies. For simpliity, we take the stok prie Xn on day n to be either1; 2; or 3 dollars (equidistributed).Example 4. You will model stok pries for n onseutive days as:x = eil(3*rand(1,n));Let the initial apital be 1 dollar. You will see what your �nal return will be over 100onseutive days. In this example, you test the \let it ride" strategy in whih the re-investedfration of day-to-day apital is lose to one. Run the sript:p=.99; %Re-investment fration of daily apitalC(1)=1; % initial apitalfor j=1:100x = eil(3*rand(1,101));for i=1:100C(i+1)=C(i)*(p*(x(i+1)/x(i))+1-p);endapital(j)=C(101);endmean(apital)You have estimated the return on your apital over a 100 day period, averaged over 100runs. Do you get something on the order of $1.50 or $1.60 for the return on your investment?If so, you have earned about 50�60 ents over the 100 days. (Remember: you only investedone dollar!)Example 5. You now test the \play it safe" strategy in whih the re-investment frationis taken to be lose to zero:p=.01; %Re-investment fration of daily apitalC(1)=1; % initial apitalfor j=1:100x = eil(3*rand(1,101));for i=1:100C(i+1)=C(i)*(p*(x(i+1)/x(i))+1-p);endapital(j)=C(101);endmean(apital) 7



Is your return on the order of $1.25? If so, you have earned about 25 ents over the 100days.Example 6. In this example, you test the e�et of using the Louis Rukeyser investmentstrategy. First, you verify that p = 1=2 is the best re-investment fration of apital, byverifying that it satis�es equation (5):p=1/2;n=10001;x=eil(3*rand(1,n));y=x(2:length(x))-x(1:length(x)-1);x=x(1:length(x)-1);mean(y./(p*y+x))Did you get nearly zero?Example 7. Run the following ode, to test the return you get from the Louis Rukeyserinvestment strategy:p=.5; %Re-investment fration of daily apitalC(1)=1; % initial apitalfor j=1:100x = eil(3*rand(1,101));for i=1:100C(i+1)=C(i)*(p*(x(i+1)/x(i))+1-p);endapital(j)=C(101);endmean(apital)Are you surprised by your result? This just goes to show you what an aurate model of thestok market ould do for investors, potentially.114.4 Exp 4: More on Single Server QueueIn Reitation 13, we showed you how to simulate a single server queue with arrival rate �and servie rate �. You learned that suh a queue is stable if and only if � > �. For a stablequeue, you did a simulation to verify that the length of the queue does not blow up withtime. For an unstable queue, you did a simulation to verify that the length of the queuedoes blow up with time. Instead of looking at the behavior of the length of the queue astime goes to in�nity, the present experiment examines the behavior of the waiting time ofthe i-th arriving paket as i!1. Spei�ally, you will do the following:� For a stable queue (� > �), you investigate the behavior of the waiting time of the i-tharriving paket as i ! 1. In this ase, the expeted waiting time of the i-th paketonverges to a �nite limit as i ! 1, and you do simulation to verify a theoretialformula that tells us what this limit is.1Of ourse, the IID priing model we used is unrealisti. A more ompliated priing model would beused in pratie. 8



� For a unstable queue (� � �), you investigate the behavior of the waiting time of thei-th arriving paket as i ! 1. In this ase, the expeted waiting time of the i-thpaket blows up as i!1, and you do a simulation to verify this.The purpose of the following Matlab examples is to provide eluidation of asymptotiproperties of single server queues disussed in Setion 42.2 of Leture Notes 42.Example 8. In this example, we let the arrival rate be � = 1 and the servie rate be� = 2. This will be a stable queue. Let Wi be the waiting time of the i-th arriving paket.We expet to see E[Wi℄ leveling o� as i ! 1. Run the following Matlab sript, whihsimulates the waiting times of eah of the �rst 100 arriving pakets:lambda=1;mu=2;w(1)=0;for i=2:100;w(i)=max(0,log(rand(1,1))/lambda-log(rand(1,1))/mu+w(i-1));endExeute the line of ode w(1:15). You will see the waiting times for eah of the �rst 15pakets printed out on your omputer sreen.Now run the following Matlab sript to generate the waiting times of the �rst 20000pakets:n=20000;lambda=1;mu=2;w(1)=0;for i=2:nw(i)=max(0,log(rand(1,1))/lambda-log(rand(1,1))/mu+w(i-1));endt=1:n;plot(t,umsum(w)./t)xlabel('number of pakets')ylabel('average waiting time')What you see is the plot of eah i versus the average waiting time for pakets 1 through i,for i = 1; 2; � � � ; 20000. Do these average waiting times appear to be \settling down" as thenumber of pakets gets large? In the optional setion of notes to be posted next week, it willbe shown that E[Wi℄ � ��(�� �) ; i large: (6)For � = 1 and � = 2, ompute ��(�� �) (7)and ompare this theoretial value with the asymptoti average waiting time you see at theright end of your plot. Are these about the same? Re-run the preeding sript a few times9



to see if the resulting plot's asymptoti average waiting time utuates losely about thevalue (7).Example 9. In this example, you simulate the waiting times of pakets for another stablesingle server queue, this time with � = 2 and � = 1:5. Run the Matlab sript:n=20000;lambda=1.5;mu=2;w(1)=0;for i=2:n;w(i)=max(0,log(rand(1,1))/lambda-log(rand(1,1))/mu+w(i-1));endt=1:n;plot(t,umsum(w)./t)lambda/(mu*(mu-lambda))Compare the asymptoti average waiting time you see at the right end of your plot with thenumber (7) omputed for � = 2 and � = 1:5. Do you get lose agreement? Run your Matlabsript again to be sure.Example 10. Now we simulate what happens to the waiting times for an unstable queue.We will take � = 1 and � = 2. Run the Matlab sriptn=20000;lambda=2;mu=1;w(1)=0;for i=2:n;w(i)=max(0,log(rand(1,1))/lambda-log(rand(1,1))/mu+w(i-1));endt=1:n;plot(t,umsum(w)./t)Do the average waiting times appear to be growing linearly as the number of pakets getslarge? If so, this is the earmark of an unstable system. Run the sript at least one moretime to be sure that this behavior keeps ouring. (There is a theory giving the slope of thisasymptoti straight line urve as a funtion of � and �, whih one an read about in anygood textbook on queueing systems.)14.5 Exp 5: Review of Bayes MethodBayes Method will be one of the review topis for the �nal exam. The purpose of thisexperiment is to remind you how to implement the di�erent steps of Bayes Method inMatlab.Let X; Y be disrete random variables. It is helpful to view X as the input to a hanneland to view Y as the orresponding output from the hannel. We suppose that there areNx values of X and Ny values of Y , that the values of X have been ordered in some way,10



and that the values of Y have been ordered in some way. We let PX, PY, PXY, PY_X, PX_Ydenote the matries given below.� PX= the vetor of hannel input probabilities. This means that PX is theNx-dimensionalrow vetor whose i-th omponent is PfX = xig, where xi is the i-th value of X in theordering of the values of X.� PY = the vetor of hannel output probabilities. This means that PY is the Ny-dimensional row vetor whose j-th omponent is PfY = yjg, where yj is the j-thvalue of Y .� PXY = the matrix of joint input-output probabilities. This means that PXY is theNx �Ny matrix suh that the element in row i and olumn j is PfX = xi; Y = yjg.� PY_X = the hannel matrix. This means that PY_X is the Nx � Ny matrix suh thatthe element in row i and olumn j is PfY = yjjX = xig.� PX_Y = the matrix of posterior probabilities. This means that PX_Y is the Nx � Nymatrix suh that element in row i and olumn j is PfX = xijY = yjg.14.5.1 Computing PY From PX and PY_XThe following MATLAB ommand will do this:PY = PX*PY_XExample 11. Let the vetor of input probabilities and the hannel matrix be given by:PX = [1=3; 1=3; 1=3℄PY_X = 264 1=3 1=3 1=31=2 1=2 01=4 1=4 1=2375Then PY is omputed by the three line MATLAB programPX = [1/3 1/3 1/3℄;PY_X = [1/3 1/3 1/3; 1/2 1/2 0; 1/4 1/4 1/2℄;PY = PX*PY_XPY =0.3611 0.3611 0.277814.5.2 Computing PX and PY From PXYThe following two MATLAB ommands will do this:PX = sum(PXY')PY = sum(PXY)11



Example 12. Let the matrix of input-output probabilities by given byPXY = 264 :1 :2 :050 :1 :2:05 :2 :1 375Then PX and PY are omputed by the following MATLAB programPXY = [.1 .2 .05; 0 .1 .2; .05 .2 .1℄;PX = sum(PXY')PY = sum(PXY)PX =0.3500 0.3000 0.3500PY =0.1500 0.5000 0.350014.5.3 Computing PXY From PX and PY_XThe following MATLAB ommand will do this:PXY = diag(PX)*PY_XExample 13. Let PX and PY_X be as given in Example 11. Then the following MATLABprogram omputes PXY.PX = [1/3 1/3 1/3℄;PY_X = [1/3 1/3 1/3; 1/2 1/2 0; 1/4 1/4 1/2℄;PXY = diag(PX)*PY_XPXY =0.1111 0.1111 0.11110.1667 0.1667 00.0833 0.0833 0.166714.5.4 Computing PY_X From PXYThe following MATLAB ommand will do this:PY_X = PXY./(diag(sum(PXY'))*ones(size(PXY)))Example 14. Let PXY be as given in Example 12. Then the following MATLAB programomputes PY_X. 12



PXY = [.1 .2 .05; 0 .1 .2; .05 .2 .1℄;PY_X = PXY./(diag(sum(PXY'))*ones(size(PXY)))PY_X =0.2857 0.5714 0.14290 0.3333 0.66670.1429 0.5714 0.285714.5.5 Computing PX_Y From PXYThe following MATLAB ommand will do this:PX_Y = PXY./(ones(size(PXY))*diag(sum(PXY)))Example 15. Let PXY be as given in Example 12. Then the following MATLAB programomputes PX_Y.PXY = [.1 .2 .05; 0 .1 .2; .05 .2 .1℄;PX_Y = PXY./(ones(size(PXY))*diag(sum(PXY)))PX_Y =0.6667 0.4000 0.14290 0.2000 0.57140.3333 0.4000 0.2857Final Remark. Bayes Method is used to perform the following two tasks:� Given PX and PY_X, ompute PY.� Given PX and PY_X, ompute PX_Y.The �rst task is aomplished aording to Setion 14.5.1 and the seond task is aomplishedaording to Setions 14.5.3 and 14.5.5.
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EE 3025 S2007 Reitation 14 Lab FormName and Student Number of Team Member 1:Name and Student Number of Team Member 2:Name and Student Number of Team Member 3:************************************************************************************Study Experiment 3 on stok market investment arefully. I will have you do somethingwith this on the lab reports. For more about this, read Setion 42.6 of the Leture 42 Notes.
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