
EE 3025 Dr. Kie�er7 Re 7: Parameters rX;Y ; �X;Y ; �X;YDiretions: Your instrutor will spend the the �rst 40 minutes of the reitation periodworking some review problems and going over one or more Matlab experiments in the fol-lowing. During the last 10 minutes of reitation, your protor will give you a \Lab Form"that your reitation team ompletes, signs, and turns in. See the last page for an indiationof what you will be asked to do on the Lab Form.Due to time limitations, only a part of the following an be overed during the reitationperiod. However, you might want in the future to try some of the unovered experiments onyour own. They ould give skills useful on some future homework problems and ould lendinsight into your understanding of the ourse from an experimental point of view.This Week's Topis.� Computation of rX;Y ; �X;Y for disrete X; Y� Estimation of rX;Y ; �X;Y ; �X;Y� Correlation Properties of a Disrete Channel� Correlation Reeiver Design� Correlation Matrix and Covariane Matrix7.1 Exp 1: Computation of rX;Y ; �X;Y for disrete X; YLet X; Y be RV's taking �nitely many values. Then it is easy to ompute rX;Y and �X;Y viaMatlab, using the joint PMF matrix. The following example illustrates the tehnique.Example 1. Let X; Y have the following joint PMF array:0B�Y = 1 Y = 2 Y = 3X = 0 1=6 1=6 0X = 1 0 1=6 1=6X = 2 1=6 0 1=6 1CA (1)Run the following Matlab sript:x=[0 1 2℄; %enter in values of Xy=[1 2 3℄; %enter in values of YM = [1/6 1/6 00 1/6 1/61/6 0 1/6℄; %enter in joint PMF matrix[X,Y℄=ndgrid(x,y);CORRELATION = sum(sum(X.*Y.*M)) 1



MEAN_X = sum(sum(X.*M))MEAN_Y = sum(sum(Y.*M))COVARIANCE = CORRELATION - MEAN_X*MEAN_YIt is not hard to evaluate rX;Y = E[XY ℄ by hand in this ase. Do that and ompare withthe �gure CORRELATION given by the above sript. Later, when you have time, you aninvestigate the wonderful Matlab ommand \ndgrid" in order to understand what it did inthe sript above. (The ommand \ndgrid" is similar to the ommand \meshgrid".)7.2 Exp 2: Estimation of rX;Y ; �X;Y ; �X;YSuppose we have a random pair (X; Y ). Suppose for some large n we observe or simulatethe values of (X; Y ) over n independent trials. We put the X observations in a vetor xof length n and we put the Y observations in a vetor y of length n. Here is how you useMatlab to estimate eah of the parameters rX;Y ; �X;Y ; �X;Y based on x,y:� The quantitymean(x.*y)is a good estimate of the orrelation rX;Y = E[XY ℄.� The quantitymean(x.*y) - mean(x)*mean(y)is a good estimate of the ovariane Cov(X; Y ) = �X;Y .� The quantity(mean(x.*y) - mean(x)*mean(y))/(std(x)*std(y))is a good estimate of the orrelation oeÆient �X;Y .Example 2. Reall the ie ream experiment of Experiment 2 of Reitation 6. (Bill eatsX ie ream ones and then runs Y miles.) Run the following sript, whih simulates 10000observations of (X; Y ):learfor i=1:10000N=-1;T=0;while T<1T=T-log(rand(1,1));N=N+1;endx(i)=N;y(i)=sum(rand(1,N+1)>1/2);end 2



Now obtain Matlab estimates of rX;Y ; �X;Y ; �X;Y using the vetors x,y. Re-run the preedingsript and then re-ompute the estimates to see if eah of three estimates stays about the sameas before. Now look at your ovariane estimate (estimate of �X;Y ). Based on this value, anyou onlude whether X; Y are statistially independent or statistially dependent? Explain.(If you don't know the answer, ask your protor.) Now look at your �X;Y estimate. Is itbetween 0 and 1 (meaning X; Y are positively orrelated) or is it between �1 and 0 (meaningX; Y are negatively orrelated). If X; Y seem to be positively orrelated, explain why thismakes sense. If you do not know why this makes sense, ask your protor or look at page 176of your textbook.Example 3. As in Experiment 3 of Reitation 6, we selet random pair (X; Y ) uniformlyfrom the region R, where R is the triangular region
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3 R0Run the following sript, whih simulates 10000 observations of (X; Y ):lear;i=0;while i<10000x_temp=3*rand(1,1);y_temp=3*rand(1,1);if x_temp+y_temp<3i=i+1;x(i)=x_temp; y(i)=y_temp;elseendendNow obtain Matlab estimates of rX;Y ; �X;Y ; �X;Y using the vetors x,y. Re-run the preedingsript and then re-ompute the estimates to see if eah of three estimates stays about the sameas before. Now look at your ovariane estimate (estimate of �X;Y ). Based on this value, anyou onlude whether X; Y are statistially independent or statistially dependent? Explain.(If you don't know the answer, ask your protor.) Now look at your �X;Y estimate. Is itbetween 0 and 1 (meaning X; Y are positively orrelated) or is it between �1 and 0 (meaningX; Y are negatively orrelated). If X; Y seem to be negatively orrelated, explain why this3



makes sense. If you do not know why this makes sense, ask your protor or look at page 176of your textbook.Example 4. If X; Y are independent thenrX;Y = E[XY ℄ = �X�Yand �X;Y = 0:Suppose that X; Y are independent Uniform(0,1) RV's. What should rX;Y be? Now run thefollowing sript and see if the results onform to your expetations:x=rand(1,50000);y=rand(1,50000);CORR_ESTIMATE = mean(x.*y)COV_ESTIMATE = mean(x.*y)-mean(x)*mean(y)Example 5. Let random pair (X; Y ) be hosen uniformly from the irular regionf(x; y) : x2 + y2 < 1gAre X; Y independent? Why or why not? What do you think the three parametersrX;Y ; �X;Y ; �X;Y will be in this ase? Run the following sript to obtain the estimates ofthese parameters:lear;i=0;while i<10000x_temp=2*rand(1,1)-1;y_temp=2*rand(1,1)-1;if x_temp^2+y_temp^2<1i=i+1;x(i)=x_temp; y(i)=y_temp;elseendendCORR_ESTIMATE = mean(x.*y)COV_ESTIMATE = mean(x.*y)-mean(x)*mean(y)RHO_ESTIMATE = ( mean(x.*y)-mean(x)*mean(y))/(std(x)*std(y))What did you learn from this Example? If you have dependent RV's, an you say anythingin advane about what the values of rX;Y ; �X;Y ; �X;Y might be?7.3 Exp 3: Correlation Properties of a Disrete ChannelIn lass, I examined orrelation properties of a hannel alled the binary symmetri hannel(BSC). The example whih follows will show you that some of the orrelation properties weexhibited for the BSC will also hold for other disrete hannels.4



Example 6. We examine a disrete hannel with input and output alphabet f0; 1; 2g andhannel matrix 264 1� p p=2 p=2p=2 1� p p=2p=2 p=2 1� p 375where p is a parameter between 0 and 1 (the probability the hannel makes a transmissionerror). The \line diagram" of this hannel is as follows:
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Let X be a random input RV to this hannel (assumed equiprobable), and let Y be theorresponding output RV. The orrelation oeÆient � = �X;Y of X and Y is given by:� = E[(X � �X)(Y � �Y )℄�X�YThe orrelation oeÆient � will be a funtion of the rossover probability p. In this Example,we will:� Use Matlab to to obtain an estimated plot of � versus p.� Examine the plot for ertain � values to see what this tells us about the relationshipbetween X and Y .We will be using the following Matlab ode to simulate a sequene x of equiprobable inputsand the orresponding sequene y of outputs from the hannel in response to these inputs:x=floor(3*rand(1,10000));u=(rand(1,10000)<p);y=rem(x+eil(2*rand(1,10000)).*u,3);Run the following program, whih estimates the orrelation oeÆient � for hannel inputand output as a funtion of p: 5



p=0:.01:1;for i=1:length(p)q=p(i);x=floor(3*rand(1,10000));u=(rand(1,10000)<q);y=rem(x+eil(2*rand(1,10000)).*u,3);rho(i)=mean((x-mean(x)).*(y-mean(y)))/(std(x)*std(y));endplot(p,rho)xlabel('error probability p')ylabel('orrelation oeffiient')You should see a plot on your omputer sreen that looks something like this:
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Things to Notie.� One an show that � is the following straight line funtion of p:� = (�3=2)p+ 1: (2)Does the \wiggly" straight line plot you see on your omputer sreen seem to be agood approximation to the straight line (2)? (Compare where the two straight linesstart and end and ompare the two slopes.)� Notie that all the � values you see on your sreen are between �1 and 1. Thisillustrates the following property of orrelation oeÆient:�1 � �X;Y � 1:6



� Look at the plot in order to see what value of p yields a � value of 0. From the plot,this appears to our at about p = 2=3. (Plugging, � = 0 into equation (2) and solvingfor p, you get exatly p = 2=3.) Plugging p = 2=3 into the hannel matrix, you obtain1/3 1/3 1/31/3 1/3 1/31/3 1/3 1/3Notie that all 3 rows of the hannel matrix are the same. Whenever you have a hannelfor whih all of the rows of the hannel matrix are idential, then hannel input X andhannel output Y will always be statistially independent (do you understand why?).A property of �X;Y states that if X; Y are independent, then �X;Y will automatiallybe equal to zero. We have just seen this property to be true in this speial ase.� Notie from the plot that when � = 1, we have p = 0 and therefore the hannel matrixis1 0 00 1 00 0 1In other words, the random pair (X; Y ) always satis�es X = Y . That is, when weperform our experiment of running an input through the hannel, the (input,output)pair will always fall on the straight line y = x in the xy-plane. A property of �X;Y saysthat if �X;Y = 1, then there must be a straight line y = ax + b with positive slope asuh that the observed value of (X; Y ) will fall on the straight line y = ax + b withprobability equal to 1. We have just seen this property to be true in this speial ase.To summarize, we have illustrated the following three properties of �X;Y :Property 1: �1 � �X;Y � 1Property 2: If X; Y are statistially independent, then �X;Y = 0.Property 3: If �X;Y = 1, then there is a straight line relationship between X and Y inwhih the straight line has positive slope.There is also the following property whih did not show up in our experiment:Property 4: If �X;Y = �1, then there is a straight line relationship between X and Y inwhih the straight line has negative slope.(This property did not show up in our experiment beause we did not obtain any � valuesmaller than �1=2.)
7



7.4 Exp 4: Correlation Reeiver DesignConsider the blok diagramX ! hannel ! Y ! orrelationreeiver ! X̂ = CYAs indiated, the output of the so-alled \orrelation reeiver" is an estimate of hannelinput X of the form X̂ = CY;a onstant C times the hannel output Y . The onstant C is hosen so that the mean-squareestimation error E[(X � X̂)2℄ = E[(X � CY )2℄ (3)is minimized. We will prove in lass that the solution for C isC = E[XY ℄E[Y 2℄ : (4)Beause of the presene of the orrelation E[XY ℄ in the preeding expression for C, you nowsee why the reeiver is alled the \orrelation" reeiver.In this experiment, we are going to simulate a large number of inputs and outputs to ahannel. Letting x be the vetor of simulated hannel inputs and letting y be the vetor ofsimulated hannel outputs, we are then going to plotmean((x-Cy).^2)as a funtion of C, whih is an estimate of the mean-square estimation error (3). In this way,we will be able to verify that the formula (4) is approximately orret by seeing for what Cvalue our plot reahes a minimum.The hannel we will be using is a \Gaussian additive noise hannel":

input  X

noise  Z

output  Y = X+Z

The \hannel noise" Z is a Gaussian RV whih is independent of the input X.Here is how the simulation of this hannel will take plae:8



� The hannel inputs will be simulated asx=randn(1,100000);In other words, we are taking the hannel input RV X to be a standard Gaussian RV.� The Gaussian hannel noise samples will be simulated asz=2*randn(1,100000);In other words, we are taking the hannel noise RV Z to be Gaussian with mean 0 andvariane 4.� Clearly, the hannel outputs will be simulated asy=x+z;Example 7. Run the following Matlab sript, whih estimates the onstant C to be usedin the orrelation reeiver:x=randn(1,100000);z=2*randn(1,100000);y=x+z;C_estimate = mean(x.*y)/mean(y.^2)Now ompute the exat value of C aording to formula (4):C = E[X(X + Z)℄E[(X + Z)2℄ = E[X2℄ + E[X℄E[Z℄E[X2℄ + 2E[X℄E[Z℄ + E[Z2℄ :Plug in E[X2℄ = 1E[X℄ = 0E[Z2℄ = 4Is your estimate for C pretty good? Store the exat value of C you just found for use in thenext example.Example 8. Run the following Matlab sript, whih will give you a plot of the estimatedmean-square estimation error (3) as a funtion of C:learx=randn(1,100000);z=2*randn(1,100000);y=x+z;C=0:.01:.5;for i=1:length(C);esterror(i)=mean((x-C(i)*y).^2);endplot(C,esterror)Eyeball the plot. Does its minimum point seem to oinide with the value of C you foundin Example 7? 9



7.5 Exp 5: Correlation Matrix and Covariane MatrixThe purpose of this experiment is to introdue you to the onepts of orrelation matrix andovariane matrix. I will use these onepts starting in next week's reitation to do someinteresting things, some of whih having to do with design.Let X; Y be random variables. The orrelation matrix of these RV's is de�ned to be the2� 2 matrix " E[X2℄ E[XY ℄E[XY ℄ E[Y 2℄ #Notie that the two diagonal elements are the seond moments of the individual RV's,whereas the two o� diagonal elements are both equal to the orrelation rX;Y = E[XY ℄.On the other hand, the 2� 2 matrix" �2X �X;Y�X;Y �2Y # ;where �X;Y = Cov[X; Y ℄, is alled the ovariane matrix of the two RV's. Depending uponthe appliation, it might be more onvenient to deal with the orrelation matrix than theovariane matrix, or vie-versa. You an go from either matrix to the other one by exploitingthe equation: " �2X �X;Y�X;Y �2Y # = " E[X2℄ E[XY ℄E[XY ℄ E[Y 2℄ #� " �2X �X�Y�X�Y �2Y # :The last term an be written more ompatly as" �2X �X�Y�X�Y �2Y # = " �X�Y # h �X �Y i :If RV's X; Y are statistially independent, then the ovariane matrix is a diagonal ma-trix: " �2X �X;Y�X;Y �2Y # = " �2X 00 �2Y # ; (5)and the orrelation matrix redues to" E[X2℄ E[XY ℄E[XY ℄ E[Y 2℄ # = " E[X2℄ �X�Y�X�Y E[Y 2℄ # : (6)In this experiment, you will see how to estimate the orrelation matrix and the ovarianematrix from data points (xi; yi), and you will also verify the speial forms of these matriesin the independent ase.Example 9: You estimate the orrelation matrix and the ovariane matrix from 50000data points (xi; yi).Step 1: Run the sript: 10



learu=rand(1,50000); v=rand(1,50000);x=3*u+v; y=-u+2*v;You have generated 50000 observations of a random pair (X; Y ), de�ned byX = 3U + V (7)Y = �U + 2V (8)where U; V are independent Uniform[0,1℄ RV's. That is, the i-th entry xi of vetor xand the i-th entry yi of vetor y yield the point (xi; yi), whih is the i-th observationof (X; Y ).Step 2: Here is a Matlab one-liner estimating the orrelation matrix of X; Y from the 50000data points:CORRMATRIX = [x;y℄*[x;y℄'/50000Step 3: Here is a one-liner estimating the ovariane matrix of X; Y from the 50000 datapoints:COVMATRIX = [x-mean(x);y-mean(y)℄*[x-mean(x);y-mean(y)℄'/50000Step 4: Compute the preise values of �X and �Y from the equations (7),(8). Then run thefollowing sript:mX =0 %enter in here the mean of XmY =0 %enter in here the mean of Y[mX mY℄'*[mX mY℄CORRMATRIX - COVMATRIXYou will see two 2 � 2 matries on your sreen. Do you understand why they areabout the same? In next week's reitation, you will see how to ompute the atualorrelation matrix and the atual ovariane matrix. Then, you will be able to returnto this example to see if the estimated matries CORRMATRIX and COVMATRIXmake sense.Step 5: Using the matrix COVMATRIX, generate an estimate for �X;Y .Example 10: In this example, you simulate observations (xi; yi) of a random pair (X; Y )in whih X; Y are independent. You then examine the speial form of the ovariane matrixestimate and the orrelation matrix estimate.Step 1: Run the sriptx=-log(rand(1,50000));y=-log(rand(1,50000)); 11



You are simulating values of (X; Y ), where X; Y are independent exponentially dis-tributed RV's eah having mean 1.Step 2: Generate estimated ovariane and orrelation matries by running the sript:COVMATRIX = [x-mean(x);y-mean(y)℄*[x-mean(x);y-mean(y)℄'/50000CORRMATRIX = [x;y℄*[x;y℄'/50000See if your estimated ovariane matrix is approximately equal to expression (5) andsee if your estimated orrelation matrix is approximately equal to expression (6). (Sineyou know X and Y eah have mean and variane 1, you will be able to ompute theseond moments of these two RV's.) To make your results even more onvining, runthe linesround(COVMATRIX)round(CORRMATRIX)
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EE 3025 S2005 Reitation 7 Lab FormName and Student Number of Team Member 1:Name and Student Number of Team Member 2:Name and Student Number of Team Member 3:************************************************************************************Study Experiment 4 arefully, at least up through Example 7. I will ask a question onerningorrelation reeiver design.
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