
EE 3025 Dr. Kie�er8 Re 8: Misellaneous End of Chapter 4 TopisDiretions: Your instrutor will spend the the �rst 40 minutes of the reitation periodworking some review problems and going over one or more Matlab experiments in the fol-lowing. During the last 10 minutes of reitation, your protor will give you a \Lab Form"that your reitation team ompletes, signs, and turns in. See the last page for an indiationof what you will be asked to do on the Lab Form.Due to time limitations, only a part of the following an be overed during the reitationperiod. However, you might want in the future to try some of the unovered experiments onyour own. They ould give skills useful on some future homework problems and ould lendinsight into your understanding of the ourse from an experimental point of view.This Week's Topis. This week's reitation gives you insight into the remaining topisfrom Chapter 4. Sine these remaining topis are not all that related to one another, thisweek's reitation may seem like somewhat of a \potpourri". Here are the topis to be overed:� Correlation Matries of Linearly Transformed RV's� Whitening Filter Design� Conditional PDF's of Joint Gaussian Density� Expeted Lifetime of Relay Ciruits8.1 Exp 1: Correlation Matries of Linearly Transformed RV'sIn Experiment 5 of Reitation 7, the onepts of orrelation matrix and ovariane matrixof a set of RV's were introdued. Suppose we now linearly transform a set of RV's toobtain a new set of RV's. This experiment shows you how to obtain the orrelation matrixand ovariane matrix of the new set of RV's from the original orrelation and ovarianematries.Let X1; X2 be given RV's and let Y1; Y2 be RV's obtained from X1; X2 via a linear trans-formation. We an express the relationship between Y1; Y2 and X1; X2 using matries:" Y1Y2 # = " a1 a2a3 a4 # " X1X2 # (1)How an the orrelation E[Y1Y2℄ between Y1; Y2 be omputed from the orrelation E[X1X2℄between X1; X2? Here is a matrix method for doing this:� Let A be the 2� 2 oeÆient matrix in (1):A = " a1 a2a3 a4 # :1



Then " E[Y 21 ℄ E[Y1Y2℄E[Y1Y2℄ E[Y 22 ℄ # = A " E[X21 ℄ E[X1X2℄E[X1X2℄ E[X22 ℄ #AT (2)� Example 1. Let (X1; X2) be independent standard Gaussian random variables. Let(Y1; Y2) be the jointly Gaussian random variables obtained as follows:Y1 = 5X1 + 3X2Y2 = 4X1 � 2X2Use Matlab to ompute the orrelation E[Y1Y2℄ by taking a produt of three 2 � 2matries aording to equation (2) (the middle one of whih is the 2 � 2 identitymatrix) and then piking o� the desired orrelation as a ertain element of the 2 � 2produt matrix.� Example 2. Now let X1; X2 be independent RV's eah uniformly distributed between0 and 1. Use the same linear transformation as in Example 1 to obtain orrelatedRV's Y1; Y2. Use Matlab to ompute the orrelation E[Y1Y2℄ by taking a produt ofthree 2 � 2 matries aording to equation (2). Be areful: The middle matrix in(2) is no longer the identity matrix|the two diagonal elements are eah equal to theseond moment of the uniform[0; 1℄ distribution, whih is 1=3, and the two o� diagonalelements are both 1=4 (why?).We an easily extend these ideas to linear transformations of three or more RV's. If we have264 Y1Y2Y3 375 = 264 a1 a2 a3a4 a5 a6a7 a8 a9 375 264 X1X2X3 375then 264 E[Y 21 ℄ E[Y1Y2℄ E[Y1Y3℄E[Y1Y2℄ E[Y 22 ℄ E[Y2Y3℄E[Y1Y3℄ E[Y2Y3℄ E[Y 23 ℄ 375 = A 264 E[X21 ℄ E[X1X2℄ E[X1X3℄E[X1X2℄ E[X22 ℄ E[X2X3℄E[X1X3℄ E[X2X3℄ E[X23 ℄ 375AT (3)where the matrix A is now the following 3� 3 oeÆient matrix:A = 264 a1 a2 a3a4 a5 a6a7 a8 a9 375 :� Example 3. Let X1; X2; X3 be independent standard Gaussian random variables andlet Y1; Y2; Y3 be the random variables:Y1 = 4X1 � 9X2 + 5X3Y2 = �2X1 + 3X2 + 7X3Y3 = 3X1 � 5X2 +X3Use Matlab to ompute the three orrelations E[Y1Y2℄, E[Y1Y3℄, E[Y2Y3℄ by taking aprodut of three 3 � 3 matries aording to equation (3) (the middle one of whihis the 3 � 3 identity matrix) and then piking o� the desired orrelations as ertainelements of the 3� 3 produt matrix. 2



� Example 4. Now let X1; X2; X3 be independent RV's eah uniformly distributed be-tween 0 and 1. Use the same linear transformation as in previous Example 3 to obtainorrelated RV's Y1; Y2; Y3. Use Matlab to ompute the three orrelations E[Y1Y2℄,E[Y1Y3℄, E[Y2Y3℄ by taking a produt of three 3�3 matries aording to equation (3).Be areful: The middle matrix in (3) is no longer the identity matrix.Now suppose we introdue a bias term [b1 b2℄T in (1):" Y1Y2 # = " a1 a2a3 a4 # " X1X2 # + " b1b2 #The means of the new RV's are related to the means of the old RV's in the same way:" �Y1�Y2 # = " a1 a2a3 a4 # " �X1�X2 #+ " b1b2 #The ovariane and variane of the new RV's are related to the ovariane and variane ofthe old random variables as follows:" �2Y1 �Y1Y2�Y1Y2 �2Y2 # = A " �2X1 �X1X2�X1X2 �2X2 #ATNotie that the bias term did not a�et these ovariane and variane omputations at all(you get the same answers taking the bias term [b1 b2℄T to be zero).� Example 5. Let U; V be independent standard Gaussian RV's. Let X; Y be the depen-dent Gaussian RV's de�ned by X = 5U + 3V � 7Y = 4U � 2V + 3Do the following Matlab omputations to ompute �X ; �Y ; �X ; �Y ; �X;Y . First, omputethe means �X ; �Y by exeuting the following Matlab ode:mu_U=0;mu_V=0;A = [5 34 -2℄;b = [-7 3℄;newmean = A*[mu_U mu_V℄' + b';mu_X = newmean(1)mu_Y = newmean(2)Now we use the equation" �2X �XY�XY �2Y # = A " �2U �UV�UV �2V #AT (4)to ompute �X ; �Y ; �X;Y by exeuting: 3



C = A*A';sigma_X = sqrt(C(1,1))sigma_Y = sqrt(C(2,2))rho_XY = C(1,2)/(sigma_X*sigma_Y)(We used the fat that the middle matrix in the triple produt on right side of (4) isthe 2� 2 identity matrix.)� Example 6. Rework Example 5 now assuming that U; V are independent uniform[0; 1℄RV's. Compute �X ; �Y ; �X ; �Y ; �X;Y via Matlab. (Note: The middle term on the rightside of equation (4) is no longer an identity matrix, but it is a diagonal matrix|whatis it?)We onlude by extending these ideas to linear transformations of three RV's with a biasterm: 264 Y1Y2Y3 375 = 264 a1 a2 a3a4 a5 a6a7 a8 a9 375 264 X1X2X3 375+ 264 b1b2b3 375The new ovarianes are expressible in terms of the old ovarianes via the matrix equation:264 �2Y1 �Y1Y2 �Y1Y3�Y1Y2 �2Y2 �Y2Y3�Y1Y3 �Y2Y3 �2Y3 375 = A 264 �2X1 �X1X2 �X1X3�X1X2 �2X2 �X2X3�X1X3 �X2X3 �2X3 375AT (5)where the matrix A is now the following 3� 3 oeÆient matrix:A = 264 a1 a2 a3a4 a5 a6a7 a8 a9 375 :The bias term does not a�et the ovariane omputations, but it does a�et the omputa-tions of the orrelations E[YiYj℄. The simplest way to ompute the orrelations would be to�rst ompute the ovarianes and then to ompute the orrelations from the ovarianes, asfollows: 264 E[Y 21 ℄ E[Y1Y2℄ E[Y1Y3℄E[Y1Y2℄ E[Y 22 ℄ E[Y2Y3℄E[Y1Y3℄ E[Y2Y3℄ E[Y 23 ℄ 375 = 264 �2Y1 �Y1Y2 �Y1Y3�Y1Y2 �2Y2 �Y2Y3�Y1Y3 �Y2Y3 �2Y3 375 +M �MT ; (6)where M is the olumn vetor of means omputable asM = 264 �Y1�Y2�Y3 375 = A � 264 �X1�X2�X3 375 + 264 b1b2b3 375
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� Example 7. Let X1; X2; X3 be independent uniform[0; 1℄ random variables and letY1; Y2; Y3 be the random variables:Y1 = 4X1 � 9X2 + 5X3 � 2Y2 = �2X1 + 3X2 + 7X3 + 4Y3 = 3X1 � 5X2 +X3 + 3Use Matlab to �nd the orrelation matrix264 E[Y 21 ℄ E[Y1Y2℄ E[Y1Y3℄E[Y1Y2℄ E[Y 22 ℄ E[Y2Y3℄E[Y1Y3℄ E[Y2Y3℄ E[Y 23 ℄ 375aording to the method just disussed (i.e., �nd the ovariane matrix using (5) andthen �nd the orrelation matrix using (6)).8.2 Exp 2: Whitening Filter DesignIn this experiment, you are going to design a type of whitening �lter. Here is a blok diagramillustrating what you will be attempting to do:
whitening filter

xu

v y

As inputs to the whitening �lter, you will be given two data streams u, v, eah onsisting of50000 samples. The outputs from the whitening �lter are to be two data streams x, y, alsoeah onsisting of 50000 samples. The inputs and outputs are related by the equationsx = a*u+b*v;y = *u+d*v;where the 4 real parameters a; b; ; d (7)are alled the whitening �lter oeÆients. In this experiment, you will be designing thewhitening �lter oeÆients so that the two output streams will be orthogonal, that is, sothatmean(x.*y)=0 5



There are several approahes via whih the whitening �lter oeÆients (7) an be designed.The approah we show you here uses the eigendeompositon of the 2� 2 orrelation matrixof the data vetors u,v (whih is obtained with the Matlab funtion eig). We will ultimatelypresent some theory in one of the letures justifying this approah; however, you do not needto understand the theory in order to perform the method. You just follow the followingsteps.Step 1: Run the following lines of Matlab ode:M=randn(2,50000);u=sum(abs(M)); v=sqrt(sum(M.^2));This will store the streams u, v, that you will be using in Matlab memory.Step 2: Compute the 2 � 2 orrelation matrix of the data streams u, v, by running thefollowing single line of Matlab ode:CORRMATRIX = [u;v℄*[u;v℄'/50000It is fun to see what the elements of this \sample" orrelation matrix are estimating.Let S; T be independent standard Gaussian RV's. Let U; V be the RV'sU = jSj+ jT jV = pS2 + T 2Then the entries of vetor u an be regarded as samples of RV U and the entries ofvetor v an be regarded as samples of RV V . It follows that the sample orrelationmatrix \CORRMATRIX" is estimating the \theoretial orrelation matrix"" E[U2℄ E[UV ℄E[UV ℄ E[V 2℄ #Matlab an help you �nd this theoretial orrelation matrix. For example,E[U2℄ = E[(jSj+jT j)2℄ = E[S2℄+E[T 2℄+2E[jSj℄E[jT j℄ = 2+2 2p2� Z 10 s exp(�s2=2)ds!2 :You an now use the Matlab funtion \int" as an aid in evaluating E[U2℄. What doyou get? Similarly, E[V 2℄ = E[S2 + T 2℄ = 2:You should now hek whether the theoretial values of the seond moments E[U2℄and E[V 2℄ orrespond to the diagonal entries of CORRMATRIX. One an also omputethe orrelation E[UV ℄ in terms of S and T asE[UV ℄ = E[(jSj+ jT j)pS2 + T 2℄:The right hand side an be evaluated by a onversion to polar oordinates. Yourinstrutor might show you some of this omputation on the board.6



Step 3: Compute the following 2� 2 matrix A by running the line of ode:[A,B℄ = eig(CORRMATRIX); AThe olumns of the matrix A are linearly independent eigenvetors of CORRMATRIX.Let the whitening �lter parameters a; b; ; d be seleted as follows:A = " a b d # :Step 4: In this step, you pass the data vetors u, v through the whitening �lter and hekwhether the �lter has whitened the data:x = a*u+b*vy = *u+d*v;mean(x.*y)Did you get the orrelation �guremean(x.*y)to be zero?Step 5: This step will give you some additional insight into why the whitening �lter worked.You an regard the �lter output vetors x and y as samples of RV's X and Y , respe-tively, where X; Y are obtained as linear ombinations of U; V whih we an write inthe following matrix format: " XY # = AT � " UV #As a onsequene of this transformation, you an use what you learned in Experiment1 to onlude that" E[X2℄ E[XY ℄E[XY ℄ E[Y 2℄ # = AT � " E[U2℄ E[UV ℄E[UV ℄ E[V 2℄ # � A: (8)It is interesting to see what the 2 � 2 matrix on the left turns out to be. You anobtain some insight into this using Matlab as follows: Do the following matrix tripleprodut via MatlabA'*CORRMATRIX*ADo you obtain a diagonal matrix? Interpret what this means in terms of the left sideof equation (8). Does it now make more sense why the x data and the y data have 0orrelation? If you are totally onfused at this point, your instrutor an try to providemore explanation. 7



8.3 Exp 3: Conditional PDF's of Joint Gaussian DensityIn Experiment 5 of Reitation 6, we introdued you to the joint Gaussian density surfaez = f(x; y), where f(x; y) is the joint Gaussian density funtion. Again, take f(x; y) of theform f(x; y) = 12�p1� �2 exp �x2 � 2�xy + y22(1� �2) ! ; (9)meaning that we have a joint Gaussian pair of RV's (X; Y ) with means �X and �Y equalto zero, standard deviations �X and �Y equal to one, and orrelation oeÆient � stritlybetween -1 and 1. In this experiment, we show you how vertial ross-setions of the Gaussiandensity surfae are related to onditional PDF's of the joint Gaussian RV's X; Y . To obtaina vertial ross-setion, we will ut through the density surfae with planes perpendiular tothe xy-plane. There are two types of vertial ross-setions:� Cut through the surfae with a plane of form x = C, where C is a onstant. Up to asaling fator, this will yield the onditional density fY jX(yjx = C) of Y given X = C,whih is a Gaussian density.� Cut through the surfae with a plane of form y = C, where C is a onstant. Up to asaling fator, this will yield the onditional density fXjY (xjy = C) of X given Y = C,a Gaussian density.Example 8. Throughout this example, we assume (X; Y ) to have orrelation oeÆient� = 1=2. Using the Matlab sript in Experiment 5 of Reitation 6, you an easily obtain thesurfae plot z = f(x; y), whih is given by the following �gure:
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The ontours that you see on the surfae are the ross-setions of the density surfae thatyou obtain with planes of the form x = C and y = C, where C is a onstant.8



� We run the following ode, whih generates the plot of one of these ontours:x=-4:.2:4;y=-4:.2:4;[X,Y℄=meshgrid(x,y);rho=1/2;Z=1/(2*pi*sqrt(1-rho^2))*exp(-(X.^2-2*rho*X.*Y + Y.^2)/(2*(1-rho^2)));z1=Z(:,15);plot(y,z1);Your plot should look like this:
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� Notie that the plot has the shape of a Gaussian density urve. Let's investigatefurther. In going down olumns of Z, you are �xing the x oordinate and letting they oordinate vary. For example, if there are 4 values x1; x2; x3; x4 in vetor x and 4values y1; y2; y3; y4 in vetor y, then the matrix Z would take the formZ = 26664 f(x1; y1) f(x2; y1) f(x3; y1) f(x4; y1)f(x1; y2) f(x2; y2) f(x3; y2) f(x4; y2)f(x1; y3) f(x2; y3) f(x3; y3) f(x4; y3)f(x1; y4) f(x2; y4) f(x3; y4) f(x4; y4) 377759



Sine z1 omes from the 15-th olumn of Z, and sine the 15-th value of x is �1:2,the ross-setional plot we've just seen, properly saled, is the onditional density ofY given X = �1:2: From your textbook, the onditional mean for Y given X = x isomputable via the formulaE[Y jX = x℄ = �Y + ��Y�X (x� �X):Plugging in �Y = �X = 0, � = 1=2, �X = �Y = 1, and x = �1:2, one obtainsE[Y jX = x℄ = �0:6:This is about where the plot is entered. The onditional standard deviation is�yjx = q1� �2�Y = p3=2:The peak value of the onditional density urve fY jX(yjx = �1:2) should therefore be1p2��yjx = 0:4607:So, you would have to sale the ross-setional plot by a fator of0:4287M ;where M is the peak value of the ross-setional plot (about 0:09).� The following sript evaluates M and the saling fator that is required:X=-1.2; Y=-0.6; rho=1/2;M=1/(2*pi*sqrt(1-rho^2))*exp(-(X.^2-2*rho*X.*Y + Y.^2)/(2*(1-rho^2)))M = 0.0895saling_fator=1/(M*sqrt(2*pi)*sqrt(0.75))saling_fator =5.1497So, just sale our earlier urve by a fator of 5.1497. This will give a genuine Gaussiandensity urve (one for whih the area underneath is equal to one). It will be the desiredonditional density.
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8.4 Exp 4: Expeted Lifetime of Relay CiruitsThe lifetime of a type 1 relay swith is exponentially distributed and the expeted lifetime is500 hours. The lifetime of a type 2 relay swith is exponentially distributed and the expetedlifetime is 300 hours.Example 9. A type 1 swith and a type 2 swith are plaed in parallel to form a relayiruit:
1

2

A B

Run the following Matlab sript, whih estimates the expeted lifetime of the relay iruit.t1=-500*log(rand(1,50000));t2=-300*log(rand(1,50000));t=max([t1;t2℄);mean(t)Do you understand what eah line of ode is doing?Example 10. We show you in this example a really ool way to obtain the exat expetedlifetime for the parallel iruit of the preeding example. If the swithes are losed withrespetive probabilities p1; p2, then we know from Chapter 1 that the overall iruit willwork with probability 1� (1� p1)(1� p2)In this expression, plug in p1 = exp(�a1t); p2 = exp(�a2t);where a1 = 1=500; a2 = 1=300:This gives a funtion we will all R(t):R(t) = 1� (1� e�a1t)(1� e�a2t):Now we do the following integral Z 10 R(t)dt:Perform this integration by running the following Matlab sript:11



leara1=1/500;a2=1/300;syms tp1=exp(-a1*t);p2=exp(-a2*t);I=int((1-(1-p1)*(1-p2)),0,inf);double(I)Compare the result with the estimated expeted iruit lifetime found from Example 9. Areyou surprised?Example 11. A type 1 swith and a type 2 swith are plaed in series to form a relayiruit:
1 2A B

Run the following Matlab sript, whih estimates the expeted lifetime of the relay iruit.t1=-500*log(rand(1,50000));t2=-300*log(rand(1,50000));t=min([t1;t2℄);mean(t)Do you understand what eah line of ode is doing?Example 12. Let us see if the ool trik of Example 10 will also work for the series iruitabove. If the swithes are losed with respetive probabilities p1; p2, then we know fromChapter 1 that the overall iruit will work with probabilityp1p2In this expression, plug in p1 = exp(�a1t); p2 = exp(�a2t);where a1 = 1=500; a2 = 1=300:This gives a funtion we will all R(t):R(t) = (e�a1t)(e�a2t):Now we do the following integral Z 10 R(t)dt:Perform this integration by running the following Matlab sript:12



leara1=1/500;a2=1/300;syms tp1=exp(-a1*t);p2=exp(-a2*t);I=int(p1*p2,0,inf);double(I)Compare the result just obtained with the estimated lifetime from Example 11. Are yousurprised?Example 13. A relay iruit is formed from 3 swithes in parallel. Two of the swithesare type 1 and the remaining one is type 2. Using Example 9 as a guide, run a Matlab sriptto estimate the expeted lifetime of the relay iruit. Using Example 10 as a guide, run aMatlab sript whih will give the EXACT expeted lifetime of the relay iruit.Example 14. A relay iruit is formed from 3 swithes in series. Two of the swithes aretype 2 and the remaining one is type 1. Using Example 11 as a guide, run a Matlab sriptto estimate the expeted lifetime of the relay iruit. Using Example 12 as a guide, run aMatlab sript whih will give the EXACT expeted lifetime of the relay iruit.
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EE 3025 S2007 Reitation 8 Lab FormName and Student Number of Team Member 1:Name and Student Number of Team Member 2:Name and Student Number of Team Member 3:************************************************************************************Study Experiment 4 arefully. I will ask a question onerning estimating the expeted life-time of a relay iruit.
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