$X$ is a continuous RV defined on the basis of a fair coin flip as follows:

- If flip is heads, $X$ is drawn at random from the interval $[-21,-9]$ according to the Uniform [-21,-9] distribution.
- If flip is tails, $X$ is drawn at random from the interval $[0, \infty)$ according to the exponential density $a \exp (-a x) u(x)$ with parameter $a=1 / 20$.

Problem 1: What are the values of $E[X \mid X<0]$ and $E[X \mid X \geq 0]$ ?

## Solution.

$$
\begin{gathered}
E[X \mid X<0]=(-21-9) / 2=-15 \\
E[X \mid X \geq 0]=1 / a=20
\end{gathered}
$$

Problem 2: What are the values of $\operatorname{Var}[X \mid X<0]$ and $\operatorname{Var}[X \mid X \geq 0]$ ?

## Solution.

$$
\begin{gathered}
\operatorname{Var}[X \mid X<0]=(-9-(-21))^{2} / 12=12 \\
\operatorname{Var}[X \mid X \geq 0]=1 / a^{2}=400
\end{gathered}
$$

Problem 3: What are the values of $E\left[X^{2} \mid X<0\right]$ and $E\left[X^{2} \mid X \geq 0\right]$ ?

## Solution.

$$
\begin{aligned}
E\left[X^{2} \mid X<0\right] & =12+(-15)^{2}
\end{aligned}=237 .
$$

Problem 4: What are the values of $E[X], \operatorname{Var}[X]$ ?

## Solution.

$$
\begin{gathered}
E[X]=0.5 *(-15)+0.5 *(20)=2.5 \\
E\left[X^{2}\right]=0.5 *(237)+0.5 * 800=518.5 \\
\operatorname{Var}[X]=518.5-(2.5)^{2}=512.25
\end{gathered}
$$

$X$ is a continuous RV with PDF

$$
f_{X}(x)=\frac{x}{18}, \quad 0 \leq x \leq 6 \text { (zero elsewhere) }
$$

Problem 5: $E[X]=$ ?
Solution.

$$
E[X]=\int_{0}^{6} x(x / 18) d x=4
$$

Problem 6: $P(0 \leq X \leq 3)=$ ?
Solution.

$$
P(0 \leq X \leq 3)=\int_{0}^{3}(x / 18) d x=1 / 4 .
$$

Problem 7: $E[X \mid 0 \leq X \leq 3]=$ ?

## Solution.

$$
E[X \mid 0 \leq X \leq 3]=\frac{\int_{0}^{3} x(x / 18) d x}{1 / 4}=2
$$

$X$ is a discrete RV whose values are all integers. The CDF of $X$ satisfies:

$$
\begin{aligned}
& F_{X}(0.5)=0, \quad F_{X}(1.5)=0.20, \quad F_{X}(2.5)=0.40 \\
& F_{X}(3.5)=0.70, \quad F_{X}(4.5)=0.85, \quad F_{X}(5.5)=1
\end{aligned}
$$

Problem 8: $P(2 \leq X \leq 4)=$ ?

## Solution.

$$
P(2 \leq X \leq 4)=F_{X}(4)-F_{X}(1)=F_{X}(4.5)-F_{X}(1.5)=0.65 .
$$

Problem 9: $E[X]=$ ?

## Solution.

$$
\begin{gathered}
p_{X}(1)=0.20 \\
p_{X}(2)=0.20 \\
p_{X}(3)=0.30 \\
p_{X}(4)=0.15 \\
p_{X}(5)=0.15 \\
E[X]=[1,2,3,4,5] \bullet[.20, .20, .30, .15, .15]=2.85
\end{gathered}
$$

Problem 10: $\operatorname{Var}[X]=$ ?

## Solution.

$$
\begin{gathered}
E\left[X^{2}\right]=[1,4,9,16,25] \bullet[.20, .20, .30, .15, .15]=9.85 . \\
\operatorname{Var}[X]=E\left[X^{2}\right]-\mu_{X}^{2}=9.85-(2.85)^{2}=1.7275 .
\end{gathered}
$$

Problem 11: Given $\mu=50$ and $\sigma=10$, then

$$
\int_{32.5}^{42.5} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x=?
$$

## Solution.

$$
\Phi\left(\frac{42.5-50}{10}\right)-\Phi\left(\frac{32.5-50}{10}\right)=\Phi(1.75)-\Phi(0.75)=0.187
$$

Problem 12: Find the real number $C$ such that

$$
\int_{C}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{z^{2}}{2}\right) d z=0.05
$$

Solution. We must have $\Phi(C)=0.95$, so $C=1.645$.
$A, B$ are events satisfying:

$$
P(A)=2 / 3, \quad P(B \mid A)=1 / 2, \quad P\left(B^{c} \mid A^{c}\right)=1 / 3
$$

Problem 13: $P(B)=$ ?
Solution. The "Bayes array" is

$$
\begin{array}{ccc} 
& B & B^{c} \\
A & 1 / 2 & 1 / 2 \\
A^{c} & 2 / 3 & 1 / 3
\end{array}
$$

Multiply the first row by $2 / 3$ and the second row by $1 / 3$ :

|  | $B$ | $B^{c}$ |
| :---: | :---: | :---: |
| $A$ | $1 / 3$ | $1 / 3$ |
| $A^{c}$ | $2 / 9$ | $1 / 9$ |

Then, $P(B)$ is sum of the left column, which is $5 / 9$.
Problem 14: $P\left(A^{c} \mid B\right)=$ ?
Solution. Divide each column of the array by the column sum:

$$
\begin{array}{ccc} 
& B & B^{c} \\
A & 3 / 5 & 3 / 4 \\
A^{c} & 2 / 5 & 1 / 4
\end{array}
$$

Then, $P\left(A^{c} \mid B\right)$ is the element in the lower left corner, namely, $2 / 5$.
Problem 15: $P\left(A \mid B^{c}\right)=$ ?
Solution. $P\left(A \mid B^{c}\right)$ is the element in the upper right corner, namely, 3/4.
$A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ are independent events each having probability 0.90 . Let $E, F$ be the events

$$
\begin{aligned}
& E=A_{1} \cap A_{2}^{c} \cap A_{3} \\
& F=A_{3} \cap A_{4}^{c} \cap A_{5}
\end{aligned}
$$

Problem 16: $P(E)=P(F)=$ ?
Solution. $(0.90)(0.10)(0.90)=0.0810$.
Problem 17: $P(E \cap F)=$ ?
Solution. $E \cap F$ is the event

$$
A_{1} \cap A_{2}^{c} \cap A_{3} \cap A_{4}^{c} \cap A_{5},
$$

which has prob

$$
(0.90)(0.10)(0.90)(0.10)(0.90)=0.0073 .
$$

Problem 18: $P(E \cup F)=$ ?

## Solution.

$$
P(E \cup F)=P(E)+P(F)-P(E \cap F)=0.1547 .
$$

An experiment consists of three random draws. On each draw, a black ball or a white ball is drawn. The tree of the experiment is below.


Problem 19: $P$ (first draw is black) $=$ ?
Solution. 2/3.
Problem 20: $P($ second draw is black $)=$ ?

## Solution.

$$
P(B B)+P(W B)=4 / 9
$$

Problem 21: $P$ (third draw is black) $=$ ?

## Solution.

$$
P(B B B)+P(B W B)+P(W B B)+P(W W B)=29 / 54 .
$$

