X is a continuous RV defined on the basis of a fair coin flip as follows:

- If flip is heads, X is drawn at random from the interval [-21, -9] according to the Uniform[-21,-9] distribution.
- If flip is tails, X is drawn at random from the interval  $[0, \infty)$  according to the exponential density  $a \exp(-ax)u(x)$  with parameter a = 1/20.

**Problem 1:** What are the values of E[X|X < 0] and  $E[X|X \ge 0]$ ?

Solution.

$$E[X|X < 0] = (-21 - 9)/2 = -15.$$
$$E[X|X \ge 0] = 1/a = 20.$$

**Problem 2:** What are the values of Var[X|X < 0] and  $Var[X|X \ge 0]$ ?

Solution.

$$Var[X|X < 0] = (-9 - (-21))^2/12 = 12.$$
$$Var[X|X \ge 0] = 1/a^2 = 400.$$

**Problem 3:** What are the values of  $E[X^2|X < 0]$  and  $E[X^2|X \ge 0]$ ?

Solution.

$$E[X^2|X < 0] = 12 + (-15)^2 = 237.$$
  
 $E[X^2|X \ge 0] = 400 + (20)^2 = 800.$ 

**Problem 4:** What are the values of E[X], Var[X]?

$$E[X] = 0.5 * (-15) + 0.5 * (20) = 2.5$$
$$E[X^2] = 0.5 * (237) + 0.5 * 800 = 518.5.$$
$$Var[X] = 518.5 - (2.5)^2 = 512.25.$$

X is a continuous RV with PDF

$$f_X(x) = \frac{x}{18}, \ 0 \le x \le 6 \text{ (zero elsewhere)}$$

**Problem 5:** E[X] = ?

Solution.

$$E[X] = \int_0^6 x(x/18)dx = 4.$$

**Problem 6:**  $P(0 \le X \le 3) = ?$ 

Solution.

$$P(0 \le X \le 3) = \int_0^3 (x/18) dx = 1/4.$$

**Problem 7:**  $E[X|0 \le X \le 3] = ?$ 

$$E[X|0 \le X \le 3] = \frac{\int_0^3 x(x/18)dx}{1/4} = 2.$$

X is a discrete RV whose values are all integers. The CDF of X satisfies:

$$F_X(0.5) = 0, \quad F_X(1.5) = 0.20, \quad F_X(2.5) = 0.40$$
  
 $F_X(3.5) = 0.70, \quad F_X(4.5) = 0.85, \quad F_X(5.5) = 1$ 

**Problem 8:**  $P(2 \le X \le 4) = ?$ 

Solution.

$$P(2 \le X \le 4) = F_X(4) - F_X(1) = F_X(4.5) - F_X(1.5) = 0.65.$$

**Problem 9:** E[X] = ?

Solution.

$$p_X(1) = 0.20$$
  

$$p_X(2) = 0.20$$
  

$$p_X(3) = 0.30$$
  

$$p_X(4) = 0.15$$
  

$$p_X(5) = 0.15$$

 $E[X] = [1, 2, 3, 4, 5] \bullet [.20, .20, .30, .15, .15] = 2.85.$ 

**Problem 10:** Var[X] = ?

$$E[X^2] = [1, 4, 9, 16, 25] \bullet [.20, .20, .30, .15, .15] = 9.85.$$
  
Var[X] =  $E[X^2] - \mu_X^2 = 9.85 - (2.85)^2 = 1.7275.$ 

**Problem 11:** Given  $\mu = 50$  and  $\sigma = 10$ , then

$$\int_{32.5}^{42.5} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) dx = ?$$

Solution.

$$\Phi\left(\frac{42.5-50}{10}\right) - \Phi\left(\frac{32.5-50}{10}\right) = \Phi(1.75) - \Phi(0.75) = 0.187.$$

**Problem 12:** Find the real number C such that

$$\int_C^\infty \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right) dz = 0.05.$$

**Solution.** We must have  $\Phi(C) = 0.95$ , so C = 1.645.

A, B are events satisfying:

$$P(A) = 2/3, \quad P(B|A) = 1/2, \quad P(B^c|A^c) = 1/3$$

**Problem 13:** P(B) = ?

Solution. The "Bayes array" is

$$\begin{array}{ccc} B & B^c \\ A & 1/2 & 1/2 \\ A^c & 2/3 & 1/3 \end{array}$$

Multiply the first row by 2/3 and the second row by 1/3:

$$\begin{array}{ccc} B & B^c \\ A & 1/3 & 1/3 \\ A^c & 2/9 & 1/9 \end{array}$$

Then, P(B) is sum of the left column, which is 5/9.

**Problem 14:**  $P(A^c|B) = ?$ 

Solution. Divide each column of the array by the column sum:

$$\begin{array}{cccc} B & B^c \\ A & 3/5 & 3/4 \\ A^c & 2/5 & 1/4 \end{array}$$

Then,  $P(A^c|B)$  is the element in the lower left corner, namely, 2/5.

**Problem 15:**  $P(A|B^c) = ?$ 

**Solution.**  $P(A|B^c)$  is the element in the upper right corner, namely, 3/4.

 $A_1,A_2,A_3,A_4,A_5$  are independent events each having probability 0.90. Let E,F be the events

$$E = A_1 \cap A_2^c \cap A_3$$
$$F = A_3 \cap A_4^c \cap A_5$$

**Problem 16:** P(E) = P(F) = ?

**Solution.** (0.90)(0.10)(0.90) = 0.0810.

**Problem 17:**  $P(E \cap F) = ?$ 

**Solution.**  $E \cap F$  is the event

$$A_1 \cap A_2^c \cap A_3 \cap A_4^c \cap A_5,$$

which has prob

(0.90)(0.10)(0.90)(0.10)(0.90) = 0.0073.

**Problem 18:**  $P(E \cup F) = ?$ 

$$P(E \cup F) = P(E) + P(F) - P(E \cap F) = 0.1547.$$

An experiment consists of three random draws. On each draw, a black ball or a white ball is drawn. The tree of the experiment is below.



**Problem 19:** P(first draw is black) = ?

Solution. 2/3.

**Problem 20:** P(second draw is black) = ?

Solution.

$$P(BB) + P(WB) = 4/9.$$

**Problem 21:** P(third draw is black) = ?

$$P(BBB) + P(BWB) + P(WBB) + P(WWB) = 29/54.$$