EE 3025 S2005 Exam 2 Solutions

Note: In each solution, I put the answer in simple enough form to be completely acceptable

PROBLEM 1

RV's X, Y satisfy the following properties:

$$
E(Y \mid X)=2 X-5, \quad \mu_{X}=1, \quad \sigma_{X}=3, \quad \sigma_{Y}=18
$$

(a) Compute μ_{Y} using law of iterated expectation.

Solution.

$$
E[Y]=E[E[Y \mid X]]=E[2 X-5]=2 E[X]-5=-3
$$

(b) Compute $E[X Y]$ using law of iterated expectation.

Solution.

$E[X Y]=E[X E[Y \mid X]]=E\left[2 X^{2}-5 X\right]=2 E\left[X^{2}\right]-5 E[X]=2 *\left(1^{2}+3^{2}\right)-5=15$.
(c) Compute $\rho_{X, Y}$.

Solution.

$$
\rho_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{E[X Y]-\mu_{X} \mu_{Y}}{54}=\frac{18}{54}=1 / 3
$$

PROBLEM 2

\bar{X}_{n} denotes the sample mean of a sample of size n from a prob dist with unknown mean μ and stan $\operatorname{dev} \sigma=3$. In parts(a),(b) below, you are to find the smallest n you can such that

$$
P\left[\mu-0.05 \leq \bar{X}_{n} \leq \mu+0.05\right] \geq 0.60
$$

(a) You are sampling from a Gaussian distribution. Find n. (Hint: $\Phi(0.84)-\Phi(-0.84)=$ 0.60.)

Solution. We must have

$$
\frac{k \sigma}{\sqrt{n}}=0.05
$$

where $k=0.84$. Solving for n, you get

$$
n=[60 * 0.84]^{2} .
$$

If you then use a calculator, you get $n=2541$. The actual figure may vary slightly from this when you replace 0.84 by enough decimal places of accuracy to get the precise value of n.
(b) You are sampling from a nonGaussian distribution. Find n.

Solution. We must have

$$
\frac{k \sigma}{\sqrt{n}}=0.05
$$

where

$$
1-\frac{1}{k^{2}}=0.60
$$

You get $k=\sqrt{2.5}$, and then

$$
n=9000 .
$$

PROBLEM 3

RV's T_{1}, T_{2} are independent, each having the PDF

$$
(0.6) \delta(t+2)+(0.4) \delta(t-1)
$$

Let $T=T_{1}-2 T_{2}$.
(a) Write down the PDF of $-2 T_{2}$.

Solution. The original values are -2 and 1 . Scaling by -2 , the new values are 4 and -2 . Therefore the PDF will become

$$
(0.6) \delta(t-4)+(0.4) \delta(t+2)
$$

(b) Find the PDF of T by convoluting the PDF of T_{1} with the PDF of $-2 T_{2}$. (Hint: $\delta\left(t-t_{0}\right) * \delta\left(t-t_{1}\right)=\delta\left(t-t_{0}-t_{1}\right)$.

Solution. There are four "cross-product" convolution terms:

$$
\begin{aligned}
(0.6) \delta(t+2) *(0.6) \delta(t-4) & =(0.36) \delta(t-2) \\
(0.6) \delta(t+2) *(0.4) \delta(t+2) & =(0.24) \delta(t+4) \\
(0.4) \delta(t-1) *(0.6) \delta(t-4) & =(0.24) \delta(t-5) \\
(0.4) \delta(t-1) *(0.4) \delta(t+2) & =(0.16) \delta(t+1)
\end{aligned}
$$

Now add these up:

$$
(0.24) \delta(t+4)+(0.16) \delta(t+1)+(0.36) \delta(t-2)+(0.24) \delta(t-5)
$$

(c) Compute $P[-3 \leq T \leq 3]$.

Solution. You pick up the two middle spikes:

$$
\text { Answer }=0.16+0.36=0.52
$$

PROBLEM 4

R is the infinite region sketched below. RV's X, Y have the joint PDF

$$
f_{X, Y}(x, y)=(0.5) \exp (-x), \quad(x, y) \in R(\text { zero elsewhere })
$$

(a) Tell me what the limits a_{1}, a_{2} below are. (Do not do anything else.)

$$
f_{X}(x)=\int_{a_{1}}^{a_{2}}(0.5) \exp (-x) d y
$$

Solution.

$$
a_{1}=0, \quad a_{2}=2 x .
$$

(b)Tell me what the limits $a_{3}, a_{4}, a_{5}, a_{6}$ are. (Do not do anything else.)

$$
P[1 \leq X \leq 7 \mid Y=3]=\frac{\int_{a_{3}}^{a_{4}}(0.5) \exp (-x) d x}{\int_{a_{5}}^{a_{6}}(0.5) \exp (-x) d x}
$$

Solution.

$$
a_{3}=1.5, \quad a_{4}=7, \quad a_{5}=1.5, \quad a_{6}=\infty .
$$

(c) Tell me what the limits $b_{1}, b_{2}, b_{3}, b_{4}$ are. (Do not do anything else.)

$$
P[Y \leq X]=\int_{b_{1}}^{b_{2}} \int_{b_{3}}^{b_{4}}(0.5) \exp (-x) d y d x
$$

Solution.

$$
b_{1}=0, \quad b_{2}=\infty, \quad b_{3}=0, \quad b_{4}=x .
$$

PROBLEM 5

Discrete RV's X, Y have the following joint PMF:

$$
\begin{aligned}
& Y=3 \\
& X=1 \\
& X=2 \\
& X=3 \\
& X=3
\end{aligned}\left(\begin{array}{ccc}
1 / 6 & 1 / 4 & 0 \\
0 & 1 / 6 & 1 / 4 \\
0 & 0 & 1 / 6
\end{array}\right)
$$

Given: $\mu_{X}=\mu_{Y}=7 / 4$ and $\sigma_{X}^{2}=\sigma_{Y}^{2}=25 / 48$.
(a) Compute $E[X Y]$.

Solution.

$E[X Y]=(1 * 3)(1 / 6)+(1 * 2)(1 / 4)+(2 * 2)(1 / 6)+(2 * 1)(1 / 4)+(3 * 1)(1 / 6)=8 / 3$.
(b) Compute $\operatorname{Cov}(X, Y)$.

Solution.

$$
\operatorname{Cov}(X, Y)=E[X Y]-\mu_{X} \mu_{Y}=(8 / 3)-(7 / 4)^{2}=(8 / 3)-(49 / 16)
$$

(With calculator, this simplifies to -0.3958 .)
(c) Compute $\rho_{X, Y}$.

Solution.

$$
\rho_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{(8 / 3)-(49 / 16)}{25 / 48}=(128 / 25)-(147 / 25)=-19 / 25=-0.76 .
$$

PROBLEM 6

A relay circuit provides a connection from point A to point B and contains three switches $1,2,3$. For $i=1,2,3$, switch i has a random lifetime T_{i} which is exponentially distributed with mean lifetime $150 i$ (hours).
(a) The overall random lifetime $T_{A B}$ of the A to B connection is given by the formula

$$
T_{A B}=\min \left(\max \left(T_{1}, T_{2}\right), T_{3}\right) .
$$

Draw a block diagram of the relay circuit.

Solution.

(b) For $i=1,2,3$, let $p_{i}=P\left[T_{i} \geq t\right]$ for $t \geq 0$. Determine p_{1}, p_{2}, p_{3} as functions of t. (Hint: See Formula Sheet for PDF of exponential distribution.)

Solution.

$$
\begin{aligned}
& p_{1}=\exp (-t / 150) \\
& p_{2}=\exp (-t / 300) \\
& p_{3}=\exp (-t / 450)
\end{aligned}
$$

(c) Let $R(t)=P\left[T_{A B} \geq t\right]$ for $t \geq 0$. Write down an expression for $R(t)$ as a function of p_{1}, p_{2}, p_{3}.

Solution.

$$
R(t)=\left[1-\left(1-p_{1}\right)\left(1-p_{2}\right)\right] p_{3} .
$$

PROBLEM 7

RV's X, Y have joint PDF of the form

$$
f_{X, Y}(x, y)=C \exp \left[-0.5\left(x^{2}-x y+2 y^{2}\right)\right]
$$

where C is a positive constant.
(a) Compute $E[Y \mid X=x]$ and $E[X \mid Y=y]$.

Solution. To find $E[Y \mid X=x]$, you can complete the square on y in the exponent, which is the same thing as setting $\partial / \partial y$ of the exponent equal to zero and solving for y :

$$
\begin{gathered}
\frac{\partial}{\partial y}\left(x^{2}-x y+2 y^{2}\right)=-x+4 y=0 . \\
y=x / 4
\end{gathered}
$$

and so

$$
E[Y \mid X=x]=x / 4
$$

To find $E[X \mid Y=y]$, you can complete the square on x in the exponent, which is the same thing as setting $\partial / \partial x$ of the exponent equal to zero and solving for x :

$$
\begin{gathered}
\frac{\partial}{\partial x}\left(x^{2}-x y+2 y^{2}\right)=2 x-y=0 . \\
x=y / 2
\end{gathered}
$$

and so

$$
E[X \mid Y=y]=y / 2
$$

(b) Compute $\operatorname{Var}(Y \mid X=x)$ and $\operatorname{Var}(X \mid Y=y)$.

Solution. When you complete the square on y, the $(y \text {-condmean })^{2}$ term will have denominator $1 / 2$. Therefore,

$$
\operatorname{Var}(Y \mid X=x)=1 / 2
$$

When you complete the square on x, the $(x-\text { condmean })^{2}$ term will have denominator 1 . Therefore,

$$
\operatorname{Var}(X \mid Y=y)=1
$$

(c) Compute $\rho_{X, Y}, \sigma_{X}^{2}, \sigma_{Y}^{2}$.

Solution. The coefficient of x in $E[Y \mid X=x]$ will always be $\rho \sigma_{Y} / \sigma_{X}$ and the coefficient of y in $E[X \mid Y=y]$ will always be $\rho \sigma_{X} / \sigma_{Y}$. This immediately gives us the equations

$$
\begin{aligned}
\frac{\rho \sigma_{Y}}{\sigma_{X}} & =1 / 4 \\
\frac{\rho \sigma_{X}}{\sigma_{Y}} & =1 / 2
\end{aligned}
$$

Multiplying the two equations together, we see that

$$
\rho^{2}=1 / 8
$$

The slope of each of the straight line "regression of the mean functions" $E[X \mid Y=y]$ and $E[Y \mid X=x]$ is positive, so ρ must be positive. We conclude that

$$
\rho=\frac{1}{\sqrt{8}} .
$$

We have

$$
\operatorname{Var}(Y \mid X=x)=1 / 2=\sigma_{Y}^{2}\left(1-\rho^{2}\right)=\sigma_{Y}^{2}(7 / 8) .
$$

Therefore,

$$
\sigma_{Y}^{2}=4 / 7 .
$$

We also have

$$
\operatorname{Var}(X \mid Y=y)=1=\sigma_{X}^{2}\left(1-\rho^{2}\right)=\sigma_{X}^{2}(7 / 8) .
$$

Therefore,

$$
\sigma_{X}^{2}=8 / 7
$$

You can also solve part(c) by inverting a 2×2 matrix (which is less exciting, but still OK).

PROBLEM 8

RV's X, Y have the SAME variance σ^{2}.
Given: $\operatorname{Var}(X+Y)=100$ and $\operatorname{Var}(X-Y)=1700$.
(a) Compute σ^{2}.

Solution.

$$
\begin{aligned}
& \operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)=2 \sigma^{2}+2 \operatorname{Cov}(X, Y)=100 \\
& \operatorname{Var}(X-Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)-2 \operatorname{Cov}(X, Y)=2 \sigma^{2}-2 \operatorname{Cov}(X, Y)=1700
\end{aligned}
$$

Adding the two equations together and dividing by 4, you conclude that

$$
\sigma^{2}=450
$$

(b) Compute $\operatorname{Cov}(X, Y)$ and $\rho_{X, Y}$.

Solution. Plugging $\sigma^{2}=450$ back into one of the equations from part(a) solution will tell you that

$$
\operatorname{Cov}(X, Y)=-400
$$

Dividing this by σ^{2} will give the correlation coefficient. We conclude that

$$
\rho=-\frac{8}{9} .
$$

(c) Compute $\operatorname{Cov}(X+2 Y, X-2 Y)$.

Solution.

$$
\operatorname{Cov}(X+2 Y, X-2 Y)=\operatorname{Cov}(X, X)-4 \operatorname{Cov}(Y, Y)=-3 \sigma^{2}=-1350
$$

