Solved Problems on Random Processes/Mean Square Estimation

1 Mean Square Estimation

Problem 1.1: Let the input to a channel be RV X which is exponentially distributed with mean 1. Given $X=x$, let the conditional distribution of the output Y from the channel be exponential with mean $1 / x$. The minimum mean square receiver generates an estimate \hat{X} of X of form

$$
\hat{X}=\frac{1}{A Y+B},
$$

for certain constants A, B. Evaluate A and B.
Solution. The joint density of (X, Y) is

$$
f_{X}(x, y)=\left\{\begin{aligned}
x e^{-x(y+1)}, & x \geq 0, y \geq 0 \\
0, & \text { elsewhere }
\end{aligned}\right.
$$

Therefore,

$$
E(X \mid Y=y)=\frac{\int_{0}^{\infty} x^{2} e^{-x(y+1)} d x}{\int_{0}^{\infty} x e^{-x(y+1)} d x}=\frac{2}{y+1}
$$

Therefore,

$$
A=B=0.5 .
$$

Problem 1.2: Let the input to a channel be RV X with PDF

$$
f_{X}(x)=x e^{-x^{2} / 2} u(x)
$$

Let the output from the channel be RV Y given by

$$
Y=4 X+2 Z
$$

where Z is a RV independent of X whose PDF is

$$
f_{Z}(z)=z e^{-z^{2} / 2} u(z)
$$

The minimum mean square straight line receiver generates an estimate \hat{X} of X of form

$$
\hat{X}=A Y+B
$$

for certain constants A, B. Evaluate A and B.

Solution.

$$
\begin{gathered}
\mu_{X}=\mu_{Z}=\sqrt{\pi / 2}=1.2533 \\
\sigma_{X}^{2}=\sigma_{Z}^{2}=2-\pi / 2=0.4292 \\
\mu_{Y}=4 \mu_{X}+2 \mu_{Z}=6 \sqrt{\pi / 2}=7.5199 \\
\sigma_{Y}^{2}=16 \sigma_{X}^{2}+4 \sigma_{Z}^{2}=40-10 \pi=8.5841 \\
\operatorname{Cov}(X, Y)=4 \sigma_{X}^{2}=8-2 \pi=1.7168 \\
\rho_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=0.8944 \\
A=\rho \sigma_{X} / \sigma_{Y}=0.2000 \\
B=\mu_{X}-A \mu_{Y}=-0.2507
\end{gathered}
$$

Problem 1.3: The input to a channel is a RV X with mean 1 and variance 1. There are two outputs Y_{1}, Y_{2} from the channel:

$$
\begin{aligned}
& Y_{1}=X+Z_{1} \\
& Y_{2}=X+Z_{2}
\end{aligned}
$$

where Z_{1}, Z_{2} constitute the "channel noise random variables" and satisfy:

- Z_{1} and Z_{2} each have mean 1 and variance 1 .
- Z_{1} and Z_{2} are independent of each other.
- Z_{1} and Z_{2} are each independent of X.
(a) Find the constants a_{1}, a_{2} so that the estimator

$$
\hat{X}=a_{1} Y_{1}+a_{2} Y_{2}
$$

will make the mean square error $E\left[(X-\hat{X})^{2}\right]$ a minimum.
Solution. Using the orthogonality principle, you solve the equations

$$
\begin{gathered}
{\left[\begin{array}{cc}
E\left[Y_{1}^{2}\right] & E\left[Y_{1} Y_{2}\right] \\
E\left[Y_{1} Y_{2}\right] & E\left[Y_{2}^{2}\right]
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
E\left[X Y_{1}\right] \\
E\left[X Y_{2}\right]
\end{array}\right] .} \\
E\left(Y_{1}\right)=E(X)+E\left(Z_{1}\right)=2 \\
\operatorname{Var}\left(Y_{1}\right)=\operatorname{Var}(X)+\operatorname{Var}\left(Z_{1}\right)=2 \\
E\left(Y_{1}^{2}\right)=\operatorname{Var}\left(Y_{1}\right)+\mu_{Y_{1}}^{2}=6
\end{gathered}
$$

Similarly,

$$
E\left(Y_{2}\right)=2, \quad E\left(Y_{2}^{2}\right)=6
$$

We also have

$$
\operatorname{Cov}\left(X, Y_{1}\right)=\operatorname{Cov}(X, X)+\operatorname{Cov}\left(X, Z_{1}\right)=1+0=1
$$

$$
E\left(X Y_{1}\right)=\operatorname{Cov}\left(X, Y_{1}\right)+\mu_{X} \mu_{Y_{1}}=3
$$

Similarly,

$$
E\left(X Y_{2}\right)=3
$$

Finally, we have

$$
\begin{gathered}
\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=\operatorname{Cov}(X, X)+\operatorname{Cov}\left(X, Z_{1}\right)+\operatorname{Cov}\left(X, Z_{2}\right)+\operatorname{Cov}\left(Z_{1}, Z_{2}\right)=1+0+0+0=1 \\
E\left(Y_{1} Y_{2}\right)=\operatorname{Cov}\left(Y_{1}, Y_{2}\right)+\mu_{Y_{1}} \mu_{Y_{2}}=5
\end{gathered}
$$

You now solve

$$
\left[\begin{array}{ll}
6 & 5 \\
5 & 6
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
3
\end{array}\right] .
$$

The solutions are

$$
a_{1}=a_{2}=3 / 11
$$

(b) Find the constants b_{1}, b_{2}, b_{3} so that the estimator

$$
\hat{X}=b_{1} Y_{1}+b_{2} Y_{2}+b_{3}
$$

will make $E\left[(X-\hat{X})^{2}\right]$ a minimum.
Solution. Using the orthogonality principle, you solve the equation

$$
\left[\begin{array}{ccc}
E\left[Y_{1}^{2}\right] & E\left[Y_{1} Y_{2}\right] & E\left[Y_{1}\right] \\
E\left[Y_{1} Y_{2}\right] & E\left[Y_{2}^{2}\right] & E\left[Y_{2}\right] \\
E\left[Y_{1}\right] & E\left[Y_{2}\right] & 1
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{c}
E\left[X Y_{1}\right] \\
E\left[X Y_{2}\right] \\
E[X]
\end{array}\right]
$$

which becomes (using the parameters computed in (a)):

$$
\left[\begin{array}{lll}
6 & 5 & 2 \\
5 & 6 & 2 \\
2 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
1
\end{array}\right]
$$

The solutions are

$$
\begin{aligned}
& b_{1}=1 / 3 \\
& b_{2}=1 / 3 \\
& b_{3}=-1 / 3
\end{aligned}
$$

Problem 1.4: A WSS random process $X(t)$ has autocorrelation function $5 /\left(\tau^{2}+9\right)$. Write some Matlab code to find the coefficient A such that $\hat{X}(3)=A X(1)$ is the optimum first-order MS predictor of $X(3)$ based on $X(1)$.

Solution.

```
tau=0:2;
autocorrelation=5./(tau.^2+9);
RXO=autocorrelation(1);
RX2=autocorrelation(3);
A=RX2/RX0
```

Problem 1.5: A WSS random process $X(t)$ has autocorrelation function $3.5-2 \cos (\tau)$. Find the coefficient A such that $\hat{X}(6)=A X(3)$ is the optimum first-order MS predictor of $X(6)$ based on $X(3)$.

Solution. Compute $A=R_{X}(3) / R_{X}(0)$.

Problem 1.6: A WSS random process $X(t)$ has autocorrelation function $5 /\left(\tau^{2}+9\right)$. Write some Matlab code to find the coefficients A, B such that $\hat{X}(4)=A X(1)+B X(2)$ is the optimum second-order MS predictor of $X(4)$ based on $X(1), X(2)$.

Solution.

```
tau=0:3;
autocorrelation=5./(tau.^2+9);
RX0=autocorrelation(1);
RX1=autocorrelation(2);
RX2=autocorrelation(3);
RX3=autocorrelation(4);
M=[RXO RX1; RX1 RX0];
v=inv(M)*[RX3 RX2]';
A=v(1)
B=v(2)
```

Problem 1.7: A WSS random process $X(t)$ has autocorrelation function $3.5-2 \cos (\tau)$. Find the coefficients A, B such that $\hat{X}(7)=A X(2)+B X(5)$ is the optimum secondorder MS predictor of $X(7)$ based on $X(2), X(5)$.

Solution. The orthogonality principle gives you the following equations to solve:

$$
\left[\begin{array}{ll}
R_{X}(0) & R_{X}(3) \\
R_{X}(3) & R_{X}(0)
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{l}
R_{X}(5) \\
R_{X}(2)
\end{array}\right]
$$

Problem 1.8: A discrete-time process $\left(X_{n}\right)$ is passed through an additive noise channel with channel noise process $\left(Z_{n}\right)$. The processes X and Z are uncorrelated zero-mean WSS processes with the following autocorrelation functions:

$$
R_{X}(\tau)=10 / 2^{|\tau|}, \quad R_{Z}(\tau)=10 \delta[\tau]
$$

The channel output process is $Y_{n}=X_{n}+Z_{n}$.
(a) Find the constant A so that $E\left[\left(X_{n}-A Y_{n}\right)^{2}\right]$ is a minimum.

Solution.

$$
A=E\left[X_{n} Y_{n}\right] / E\left[Y_{n}^{2}\right]=R_{X}(0) /\left(R_{X}(0)+R_{Z}(0)\right)=0.50
$$

(b) Find the constant B so that $E\left[\left(X_{n}-B Y_{n-1}\right)^{2}\right]$ is a minimum.

Solution.

$$
B=E\left[X_{n} Y_{n-1}\right] / E\left[Y_{n-1}^{2}\right]=R_{X}(1) /\left(R_{X}(0)+R_{Z}(0)\right)=0.25
$$

Problem 1.9: In the block diagram below,

$$
X \rightarrow \text { channel } \rightarrow Y \rightarrow \text { estimator } \rightarrow \hat{X}
$$

the input RV X and the channel satisfy

$$
\left[\begin{array}{l}
p_{X}(0)=0.25 \\
p_{X}(1)=0.40 \\
p_{X}(2)=0.35
\end{array}\right] \quad\left[\begin{array}{lll}
P[Y=0 \mid X=0]=0.5 & P[Y=1 \mid X=0]=0.5 & P[Y=2 \mid X=0]=0 \\
P[Y=0 \mid X=1]=0.5 & P[Y=1 \mid X=1]=0 & P[Y=2 \mid X=1]=0.5 \\
P[Y=0 \mid X=2]=0 & P[Y=1 \mid X=2]=0.5 & P[Y=2 \mid X=2]=0.5
\end{array}\right]
$$

The (nonlinear) least-squares estimator $\hat{X}=\hat{X}_{\text {LS }}$ minimizes the mean square estimation error $E\left[(X-\hat{X})^{2}\right]$ and takes the form

$$
\hat{X}_{\mathrm{LS}}=\left\{\begin{array}{cc}
\hat{X}_{\mathrm{LS}}(0), & Y=0 \\
\hat{X}_{\mathrm{LS}}(1), & Y=1 \\
\hat{X}_{\mathrm{LS}}(2), & Y=2
\end{array}\right.
$$

Find $\hat{X}_{\mathrm{LS}}(0), \hat{X}_{\mathrm{LS}}(1), \hat{X}_{\mathrm{LS}}(2)$.
Solution. The matrix of joint probabilities is

$$
\left[\begin{array}{ccc}
1 / 8 & 1 / 8 & 0 \\
0.20 & 0 & 0.20 \\
0 & 0.175 & 0.175
\end{array}\right]
$$

Normalizing columns, the matrix of conditional probabilities for the X values given the Y values is then

$$
\left[\begin{array}{ccc}
5 / 13 & 5 / 12 & 0 \\
8 / 13 & 0 & 8 / 15 \\
0 & 7 / 12 & 7 / 15
\end{array}\right]
$$

Using this conditional probability matrix, you get:

$$
\begin{aligned}
\hat{X}_{\mathrm{LS}}(0) & =E[X \mid Y=0]=8 / 13 \\
\hat{X}_{\mathrm{LS}}(1) & =E[X \mid Y=1]=7 / 6 \\
\hat{X}_{\mathrm{LS}}(2) & =E[X \mid Y=2]=22 / 15
\end{aligned}
$$

Problem 1.10: In the block diagram below,

$$
X[n] \rightarrow \text { channel } \rightarrow Y[n]=X[n]+Z[n] \rightarrow \text { filter } \rightarrow \hat{X}[n]
$$

the signal $X[n]$ is WSS with autocorrelation function $2^{-|\tau|}$ and the channel noise process $Z[n]$ is WSS with $R_{Z}[\tau]=\delta[\tau]$; signal \& channel noise are uncorrelated. You are going to design a two-tap predictive Wiener filter, whose output at time n is of the form

$$
\hat{X}[n+1]=A Y[n]+B Y[n-1]
$$

and minimizes the prediction error $E\left[(X[n+1]-\hat{X}[n+1])^{2}\right]$.
(a) The prediction error $X[n+1]-\hat{X}[n+1]$ must be uncorrelated with each of the observations $Y[n]$ and $Y[n-1]$. Using this fact, you can write down two linear equations

$$
\begin{align*}
& C_{1,1} A+C_{1,2} B=C_{1,3} \tag{1}\\
& C_{2,1} A+C_{2,2} B=C_{2,3} \tag{2}
\end{align*}
$$

involving the unknown filter tap weights A and B. Determine the six constants

$$
C_{1,1}, C_{1,2}, C_{1,3}, C_{2,1}, C_{2,2}, C_{2,3}
$$

Solution. From the equations

$$
\begin{aligned}
E[(X[n+1]-A Y[n]-B Y[n-1]) Y[n]] & =0 \\
E[(X[n+1]-A Y[n]-B Y[n-1]) Y[n-1]] & =0
\end{aligned}
$$

you obtain

$$
\begin{aligned}
A R_{Y}[0]+B R_{Y}[1] & =R_{X}[1] \\
A R_{Y}[1]+B R_{Y}[0] & =R_{X}[2]
\end{aligned}
$$

from which one determines that

$$
\begin{array}{lll}
C_{1,1}=2 & C_{1,2}=1 / 2 & C_{1,3}=1 / 2 \\
C_{2,1}=1 / 2 & C_{2,2}=2 & C_{2,3}=1 / 4
\end{array}
$$

(b) Solve the equations (1)-(2) simultaneously for A and B.

Solution. You get $A=7 / 30$ and $B=1 / 15$.

2 Nonstationary Processes

Problem 2.1: Let $r(t)$ be the ramp function

$$
r(t)= \begin{cases}t, & t \geq 0 \\ 0, & t<0\end{cases}
$$

Let random variable U be uniformly distributed in the interval $[0,1]$. Let

$$
X(t), \quad-\infty<t<\infty
$$

be the continuous-time random process in which

$$
X(t)=r(U+t) r(U-t)
$$

(a) Let the continuous-time signal $x(t)$ be the realization of the process $X(t)$ that you get when $U=1 / 2$. Plot $x(t)$. Is $x(t) \geq 0$ for all t ? Is $x(t)$ an even function of t ? At what time t does $x(t)$ attain its peak value? At what two times t does $x(t)$ attain a value equal to one-half the peak value?
Solution. $x(t)$ can be described mathematically as:

$$
x(t)=\left\{\begin{array}{cl}
0.25-t^{2}, & -0.5 \leq t \leq 0.5 \\
0, & \text { elsewhere }
\end{array}\right.
$$

The plot is:

The signal is clearly nonnegative and even. The peak value (which is 0.25) is taken on when $t=0$. Half the peak value (which is 0.125) is taken on at $t=$ $\pm 1 / \sqrt{8}= \pm 0.3536$.
(b) Compute $E(X(0))$ and compute $E(X(1 / 2))$. Can you conclude from these two answers that $X(t)$ is a nonstationary process?
Solution. For each t,

$$
X(t)=\max \left(0, U^{2}-t^{2}\right)
$$

Thus,

$$
\begin{gathered}
X(0)=U^{2} \\
X(1 / 2)=\max \left(0, U^{2}-1 / 4\right) \\
E[X(0)]=E\left[U^{2}\right]=(1 / 12)+(1 / 2)^{2}=1 / 3 \\
E[X(1 / 2)]=\int_{0}^{1} \max \left(0, u^{2}-1 / 4\right) d u=\int_{1 / 2}^{1}\left(u^{2}-1 / 4\right) d u=1 / 6
\end{gathered}
$$

The process must be nonstationary (if it were stationary, $E[X(t)]$ would be the same for all t).

Problem 2.2: A message M is modeled as an equiprobable discrete RV taking the values $1,2,4$. Frequency modulation is used to transmit M over a communication system. The resulting modulated FM wave is

$$
M(t)=\cos (2 \pi t M), \quad-\infty<t<\infty
$$

(a) $M(t)$ is a continuous-time random signal. It has 3 realizations. What are each of these realizations? Each realization is a periodic signal; give the period of each realization. Plot each of the 3 realizations for $0 \leq t \leq 1$.
Solution. The 3 realizations are

$$
\begin{aligned}
& x_{1}(t)=\cos (2 \pi t) \\
& x_{2}(t)=\cos (4 \pi t) \\
& x_{3}(t)=\cos (8 \pi t)
\end{aligned}
$$

The plots are:

The periods of $x_{1}(t), x_{2}(t), x_{3}(t)$ are $1,1 / 2,1 / 4$, respectively.
(b) Let X and Y be the RV's

$$
X=M(1 / 4), \quad Y=M(1 / 8)
$$

Compute $\rho_{X, Y}$.

Solution.

$$
\begin{aligned}
E(X Y)= & E(\cos (\pi M / 2) \cos (\pi M / 4)) \\
= & (1 / 3) \cos (\pi / 2) \cos (\pi / 4)+(1 / 3) \cos (\pi) \cos (\pi / 2)+(1 / 3) \cos (2 \pi) \cos (\pi) \\
= & -1 / 3
\end{aligned} \quad \begin{gathered}
E(X)=E(\cos (\pi M / 2))=(1 / 3)(-1)+(1 / 3)(1)=0 \\
E\left(X^{2}\right)=(1 / 3)(-1)^{2}+(1 / 3)(1)^{2}=2 / 3 \\
\sigma_{X}^{2}=2 / 3
\end{gathered} \quad \begin{gathered}
E(Y)=E(\cos (\pi M / 4))=(1 / 3)(1 / \sqrt{2})+(1 / 3)(-1)=-0.0976 \\
E\left(Y^{2}\right)=(1 / 3)(1 / \sqrt{2})^{2}+(1 / 3)(-1)^{2}=1 / 2 \\
\sigma_{X}^{2}=1 / 2-(-0.0976)^{2}=0.4905 \\
\\
\quad \rho_{X, Y}=\frac{-1 / 3}{\sqrt{(2 / 3) *(0.4905)}}=-0.5829 .
\end{gathered}
$$

(c) Find a time t satisfying $0<t<1$ such that the RV's $M(t)$ and $M(1 / 4)$ are uncorrelated.
Solution. Since $E(M(1 / 4))=0$, the problem reduces to finding t for which

$$
E(\cos (2 \pi t M) \cos (\pi M / 2))=0 .
$$

This is true if and only if

$$
-\cos (4 \pi t)+\cos (8 \pi t)=0
$$

$t=1 / 2$ is obviously one solution between $t=0$ and $t=1$. Plotting the signal $-\cos (4 \pi t)+\cos (8 \pi t)$, you will see that this is the only solution.
(d) Is the process stationary?

Solution. $M(0)$ is identically equal to 1 , i.e., it is not random. But, at other times, $M(t)$ can be random. Since all 1-D cross-sections do not have the same distribution, the process is not stationary.

Problem 2.3: Let A, B be independent RV's each having mean 0 and variance 1. Let $X(t)$ be the continuous-time random process

$$
X(t)=A t+(2 t-1) B, \quad-\infty<t<\infty
$$

(a) Compute the autocorrelation function $R_{X}(s, t)$.

Solution.

$$
R_{X}(s, t)=E[X(s) X(t)]=s t E\left[A^{2}\right]+E[A B]\{s(2 t-1)+t(2 s-1)\}+E\left[B^{2}\right](2 s-1)(2 t-1) .
$$

Since $E[A B]=0$ (why?), this simplifies to

$$
R_{X}(s, t)=s t+(2 s-1)(2 t-1) .
$$

(b) Find the value of t for which $\operatorname{Var}[X(t)]$ is a minimum.

Solution. The mean function $\mu_{X}(t)$ is clearly zero. Therefore,

$$
\operatorname{Var}[X(t)]=R_{X}(t, t)=t^{2}+(2 t-1)^{2} .
$$

Setting the first derivative equal to zero, one easily determines that $t=2 / 5$.
(c) Find the value of t for which $E[X(t) X(t-1)]$ is a minimum.

Solution.

$$
E[X(t) X(t-1)]=R_{X}(t, t-1)=t(t-1)+(2 t-1)(2 t-3) .
$$

Setting the derivative equal to zero yields $t=9 / 10$.
(d) Is the process stationary?

Solution. No, because $R_{X}(s, t)$ is not a function of $s-t$.

Problem 2.4: Let A be a discrete RV with PMF

$$
p_{A}(a)= \begin{cases}1 / 2, & a=0 \\ 1 / 4, & a=1 \\ 1 / 4, & a=2\end{cases}
$$

We consider the continuous-time random process $(X(t): t \geq 0)$ in which

$$
X(t)=\exp (-A t), \quad t \geq 0
$$

(a) What are the realizations?

Solution. The three realizations are $u(t), \exp (-t) u(t), \exp (-2 t) u(t)$.
(b) Find the PMF of the component RV $X(t)$.

Solution. For fixed $t>0$, the $\mathrm{RV} X(t)$ takes the three values $1, \exp (-t)$, and $\exp (-2 t)$, with probabilities $1 / 2,1 / 4,1 / 4$, respectively. The RV $X(0)$ has to be treated as a special case. It takes just one value 1, with probability 1.
(c) Compute $E[X(t)]$.

Solution.

$$
E[X(t)]=1 *(1 / 2)+\exp (-t) *(1 / 4)+\exp (-2 t) *(1 / 4)
$$

(d) Does the limit of $\operatorname{Var}[X(t)]$ exist as $t \rightarrow \infty$? If so, what is the limit?

Solution. As $t \rightarrow \infty$, the 1st realization stays at 1, and the 2nd and 3rd realizations converge to 0 . In other words, we may regard $X(\infty)$ as the RV with the two values 1,0 taken on with probability $1 / 2$ each. The mean of $X(\infty)$ is $1 / 2$, its second moment is also $1 / 2\left(\right.$ since $\left.X(\infty)^{2}=X(\infty)\right)$, and so its variance is $1 / 2-(1 / 2)^{2}=1 / 4$.
We conclude that

$$
\lim _{t \rightarrow \infty} \operatorname{Var}[X(t)]=\operatorname{Var}[X(\infty)]=1 / 4
$$

The long way to show this is first to show that

$$
\begin{aligned}
\operatorname{Var}[X(t)] & =E\left[X(t)^{2}\right]-(0.5+0.25 * \exp (-t)+0.25 * \exp (-2 t))^{2} \\
& =(0.5+0.25 * \exp (-2 t)+0.25 * \exp (-4 t)) \\
& -(0.5+0.25 * \exp (-t)+0.25 * \exp (-2 t))^{2}
\end{aligned}
$$

Taking the limit as $t \rightarrow \infty$, the exponentials drop out and you again get the answer 1/4.

3 WSS Processes

Problem 3.1: What approximate result will the following Matlab script give:

```
n=1:100000;
freq=pi/8;
theta=2*pi*rand (1,100000);
mean(cos(freq*n+theta).*\operatorname{cos(freq*(n+2)+theta))}
```

Solution. Let X be the ergodic WSS discrete-time process for which

$$
X_{n}=\cos (\Theta+n \pi / 8),
$$

where Θ is uniformly distributed between 0 and 2π. The Matlab script is using "timeaveraging" to approximate $R_{X}(2)$. From "random sinusoid" theory, we know that

$$
R_{X}(\tau)=(1 / 2) \cos \left(\omega_{0} \tau\right)
$$

Therefore,

$$
R_{X}(2)=(1 / 2) \cos (\pi / 4)=1 /(2 \sqrt{2}) .
$$

Problem 3.2: An ergodic WSS process $X(t)$ has autocorrelation function $5+4 * 2^{-|\tau|}$.
(a) Compute μ_{X} (assuming $\mu_{X}>0$).

Solution. $\mu_{X}^{2}=\lim _{\tau \rightarrow \infty} R_{X}(\tau)=5$. Therefore, $\mu_{X}=\sqrt{5}$.
(b) Compute the power P_{X} generated by the process.

Solution. $P_{X}=R_{X}(0)=9$.
(c) Compute $\operatorname{Var}[X(t)]$.

Solution. $\operatorname{Var}[X(t)]=P_{X}-\mu_{X}^{2}=4$.
(d) Compute $\operatorname{Var}[X(1)+X(2)+X(3)]$.

Solution. From the two equations

$$
\operatorname{Cov}[X(i), X(j)]=4 * 2^{-|i-j|}
$$

and

$$
\begin{aligned}
\operatorname{Var}[X(1)+X(2)+X(3)] & =\sum_{i=1}^{3} \operatorname{Var}[X(i)]+2 \operatorname{Cov}[X(1), X(2)] \\
& +2 \operatorname{Cov}[X(2), X(3)]+2 \operatorname{Cov}[X(1), X(3)]
\end{aligned}
$$

we obtain:

$$
\operatorname{Var}[X(1)+X(2)+X(3)]=3 * 4+2 * 2+2 * 2+2 * 1=22
$$

(e) Compute the constant A so that $\hat{X}(2)=A X(1)$ will be the minimum mean square predictor of $X(2)$ based on $X(1)$.
Solution. We know from class that $A=R_{X}(1) / R_{X}(0)$. Therefore, $A=7 / 9$.

Problem 3.3: A discrete-time ergodic WSS process X has a realization of period 3 which takes the consecutive left-to-right values of $1,2,3$ over one period. Compute μ_{X}, P_{X}, $\sigma_{X}^{2}, R_{X}(7) R_{X}(11)$.

Solution. Since the realization is periodic with period $3, R_{X}(\tau)$ will also be periodic with period 3 . Using this fact and the ergodic property, we can compute all of the desired parameters via time averaging:

$$
\begin{gathered}
\mu_{X}=(1+2+3) / 3=2 \\
P_{X}=R_{X}(0)=\left(1^{2}+2^{2}+3^{2}\right) / 3=14 / 3 \\
\sigma_{X}^{2}=P_{X}-\mu_{X}^{2}=2 / 3 \\
R_{X}(7)=R_{X}(7-2 * 3)=R_{X}(1)=(1 / 3)[1,2,3] \bullet[2,3,1]=11 / 3 \\
R_{X}(11)=R_{X}(11-3 * 3)=R_{X}(2)=(1 / 3)[1,2,3] \bullet[3,1,2]=11 / 3
\end{gathered}
$$

Problem 3.4: A box contains two coins, one fair and the other biased with probability of heads equal to $2 / 3$. A coin is selected from the box at random and flipped forever. Let X be the discrete-time WSS process defined by:

$$
X[n]= \begin{cases}1, & \text { if } n-\text { th flip is heads } \\ 0, & \text { if } n-\text { th flip is tails }\end{cases}
$$

Work out $R_{X}(\tau), P_{X}, \mu_{X}, \sigma_{X}^{2}$. Is the process ergodic?

Solution.

$$
\begin{aligned}
P_{X} & =R_{X}(0)=(1 / 2) E\left[X[n]^{2} \mid \text { fair }\right]+(1 / 2) E\left[X[n]^{2} \mid \text { biased }\right] \\
& =(1 / 2)(1 / 2)+(1 / 2)(2 / 3)=7 / 12 \\
R_{X}(\tau)(\tau \neq 0) & =(1 / 2) E[X[n] X[n+\tau] \mid \text { fair }]+(1 / 2) E[X[n] X[n+\tau] \mid \text { biased }] \\
& =(1 / 2)(1 / 2)(1 / 2)+(1 / 2)(2 / 3)(2 / 3)=25 / 72 \\
\mu_{X} & =(1 / 2) E[X[n] \mid \text { fair }]+(1 / 2) E[X[n] \mid \text { biased }] \\
& =(1 / 2)(1 / 2)+(1 / 2)(2 / 3)=7 / 12 \\
\sigma_{X}^{2} & =P_{X}-\mu_{X}^{2}=7 / 12-49 / 144=35 / 144
\end{aligned}
$$

Intuitively, the process is not ergodic because half the time you get a realization according to the fair coin, and the other half of the time you get a realization according to the unfair coin. Time averages computed for these two types of realizations would give different answers.

Problem 3.5: The power spectral density $S_{X}(\omega)$ of an ergodic WSS process $X(t)$ is plotted above.
(a) Compute P_{X}.

Solution.

$$
P_{X}=\frac{1}{2 \pi} \int_{-4}^{4}\left(16-\omega^{2}\right) d \omega+\frac{30}{2 \pi}=\frac{173}{3 \pi}
$$

(b) Determine the percentage of the total power that is due to the frequency band $-3 \leq \omega \leq 3$.
Solution.

$$
\begin{gathered}
\frac{1}{2 \pi} \int_{-3}^{3}\left(16-\omega^{2}\right) d \omega+\frac{30}{2 \pi}=\frac{54}{\pi} \\
\text { Percentage }=\left[\frac{54}{173 / 3}\right] \times 100=93.64 \%
\end{gathered}
$$

(c) Determine μ_{X}^{2} and σ_{X}^{2}.

Solution. Only the inverse transform of the delta function part contributes anything as $\tau \rightarrow \infty$. So, μ_{X}^{2} is the inverse transform of $30 \delta(\omega)$, which is $15 / \pi$.

$$
\begin{aligned}
\mu_{X}^{2} & =15 / \pi \\
\sigma_{X}^{2} & =P_{X}-15 / \pi=128 / 3 \pi
\end{aligned}
$$

Problem 3.6: A WSS process $X(t)$ has autocorrelation function $R_{X}(\tau)=3+2 \exp (-|\tau|)$.
(a) What is the average power generated by the process $X(t)$?

Solution. $P_{X}=R_{X}(0)=5$
(b) Find $S_{X}(\omega)$.

Solution. Take Fourier transform of $R_{X}(\tau)$. You get

$$
S_{X}(\omega)=6 \pi \delta(\omega)+\frac{4}{1+\omega^{2}}
$$

(c) What percentage of the $X(t)$ power is due to frequencies in the band $-1 \leq \omega \leq 1$?

Solution.

$$
(1 / 2 \pi) \int_{-1}^{1} S_{X}(\omega) d \omega=3+8 \operatorname{Tan}^{-1}(1) / 2 \pi=4
$$

Percentage of total power $=80 \%$

Problem 3.7: Let $X(t)$ and $Y(t)$ be independent WSS processes with $R_{X}(\tau)=\cos (6 \pi \tau)$ and $R_{Y}(\tau)=\cos (2 \pi \tau)$. Compute the power spectral density of the process $Z(t)=$ $X(t) Y(t)$. Compute the power generated by the process $Z(t)$ in two different ways.

Solution.

$$
\begin{aligned}
& R_{Z}(\tau)=R_{X}(\tau) R_{Y}(\tau)=(1 / 2)[\cos (8 \pi \tau)+\cos (4 \pi \tau)] \\
& S_{Z}(f)=(1 / 4)[\delta(f-4)+\delta(f+4)+\delta(f-2)+\delta(f+2)] \\
& \text { power }=R_{Z}(0)=1 \\
& \text { power }=\int_{-\infty}^{\infty} S_{Z}(f) d f=(1 / 4)[1+1+1+1]=1
\end{aligned}
$$

4 Linear Filtering of Processes

Problem 4.1: Let $\left(X_{n}\right)$ be white noise with $R_{X}(\tau)=\delta[\tau]$ (the discrete-time delta function). Let $\left(Y_{n}\right)$ be the WSS process arising from the causal filtering operation:

$$
\begin{equation*}
Y_{n}=8 X_{n}+(0.6) Y_{n-1}, \text { for all integers } n \tag{3}
\end{equation*}
$$

(a) Multiply both sides of (3) by X_{n} and take the expected value of both sides. Using the fact that $E\left[Y_{i} X_{n}\right]=0$ for all $i<n$, deduce what the value of $E\left[X_{n} Y_{n}\right]$ is.

Solution.

$$
E\left[Y_{n} X_{n}\right]=8 E\left[X_{n}^{2}\right]=8
$$

(b) Multiply both sides of (3) by Y_{n} and then by Y_{n-1}; take the expected value, and then solve the two resulting equations simultaneously for $R_{Y}(0)$ and $R_{Y}(1)$.
Solution. Multiplying as directed:

$$
\begin{gathered}
E\left[Y_{n}^{2}\right]=8 E\left[X_{n} Y_{n}\right]+(0.6) E\left[Y_{n-1} Y_{n}\right] \\
E\left[Y_{n} Y_{n-1}\right]=(0.6) E\left[Y_{n-1}^{2}\right]
\end{gathered}
$$

These equations simplify to:

$$
\begin{gathered}
R_{Y}(0)=64+(0.6) R_{Y}(1) \\
R_{Y}(1)=(0.6) R_{Y}(0)
\end{gathered}
$$

The solution is:

$$
R_{Y}(0)=100, \quad R_{Y}(1)=60
$$

(c) Multiply both sides of (3) by Y_{n-2}, take the expected value, and then compute $R_{Y}(2)$ from $R_{Y}(1)$.

Solution.

$$
\begin{gathered}
E\left[Y_{n} Y_{n-2}\right]=(0.6) E\left[Y_{n-1} Y_{n-2}\right] \\
R_{Y}(2)=(0.6) R_{Y}(1)=36
\end{gathered}
$$

Problem 4.2: The power spectral density $S_{X}(\omega)$ of a continuous-time WSS process $X(t)$ is plotted above.
(a) Compute the power P_{X} generated by the process $X(t)$.

Solution. Divide the area of the triangle by 2π.

$$
P_{X}=(1 / 2) * 40 * 10 *(1 / 2 \pi)=100 / \pi
$$

(b) Let $Y(t)$ be the process obtained by linear filtering of $X(t)$ with filter frequency response function:

$$
H(\omega)= \begin{cases}1, & -10 \leq \omega \leq 10 \\ 0, & \text { elsewhere }\end{cases}
$$

Compute the power P_{Y} generated by the process $Y(t)$.
Solution. You just have to remove two little triangles of base 10 and height 5 from the X process power spectrum.

$$
P_{Y}=(200-2 * 0.5 * 10 * 5) / 2 \pi=75 / \pi
$$

(c) Let $Y(t)$ be obtained from filtering of $X(t)$ as before, except that now the filter has frequency response

$$
H(\omega)= \begin{cases}1, & -B \leq \omega \leq B \\ 0, & \text { elsewhere }\end{cases}
$$

where the filter bandwidth B must be between 0 and 20. Compute the bandwidth B so that $P_{Y} / P_{X}=0.90$.
Solution. You just have to remove two little triangles of base $20-B$ and height $0.5(20-B)$ from the X process power spectrum.

$$
P_{Y}=(200-2 * 0.5 * 0.5 *(20-B)(20-B)) / 2 \pi
$$

Setting $P_{Y}=0.9 * P_{X}$, you get

$$
200-(20-B)^{2} / 2=180
$$

from which you determine that

$$
B=20-\sqrt{40}=13.68
$$

Problem 4.3: A WSS process $X(t)$ has power spectral density function

$$
S_{X}(\omega)=\left\{\begin{aligned}
4-\left(\omega^{2} / 9\right), & |\omega| \leq 6 \\
0, & \text { elsewhere }
\end{aligned}\right.
$$

(a) Find the average power generated by this process.

Solution.

$$
P_{X}=\frac{1}{2 \pi} \int_{-6}^{6}\left[4-\omega^{2} / 9\right] d \omega=16 / \pi
$$

(b) Find $R_{X}(\tau)$.

Solution.

$$
\begin{aligned}
R_{X}(\tau) & =\frac{1}{2 \pi} \int_{-6}^{6}\left[4-\omega^{2} / 9\right] e^{j \omega \tau} d \omega \\
& =\frac{1}{\pi} \int_{0}^{6}\left[4-\omega^{2} / 9\right] \cos (\tau \omega) d \omega \\
& =\frac{4 \sin (6 \tau)}{\pi \tau}+\left(d^{2} / d \tau^{2}\right)\left[\frac{\sin (6 \tau)}{9 \pi \tau}\right]
\end{aligned}
$$

(c) $X(t)$ is applied as input to the $R C$ filter given in the diagram below (take $R C=$ $1 / 6)$. Find the average power generated by the filter output process $Y(t)$.

Solution.

$$
\begin{aligned}
& S_{Y}(\omega)=|H(\omega)|^{2} S_{X}(\omega)=\left[\frac{1}{1+\omega^{2} / 36}\right] S_{X}(\omega) \\
& P_{Y}=\frac{1}{2 \pi} \int_{-6}^{6} \frac{4-\omega^{2} / 9}{1+\omega^{2} / 36} d \omega \\
&=\frac{4}{\pi} \int_{0}^{6}\left[\frac{72}{36+\omega^{2}}-1\right] d \omega \\
&=12\left(1-\frac{2}{\pi}\right)
\end{aligned}
$$

Problem 4.4: Refer to the RC filter diagram above. Suppose that $R C=2$.
(a) Assuming $\mu_{X}=2$. Compute μ_{Y}.

Solution.

$$
H(s)=\frac{1 / 2}{s+1 / 2}
$$

$$
\begin{gathered}
h(t)=0.5 \exp (-t / 2) u(t) \\
\mu_{Y}=\mu_{X} \int_{-\infty}^{\infty} h(t) d t=5 * 1=5
\end{gathered}
$$

(b) Assuming $R_{X}(\tau)=6 \delta(\tau)$, compute P_{Y}.

Solution. Since the input is white,

$$
P_{Y}=P_{X} \int_{-\infty}^{\infty} h(t)^{2} d t=6 \int_{0}^{\infty} 0.25 \exp (-t) d t=1.5
$$

Problem 4.5: A WSS process $X(t)$ has autocorrelation function $R_{X}(\tau)=A+B \delta(\tau)$, where A and B are constants. Let $Y(t)$ be the process defined by

$$
Y(t)=\int_{t-3}^{t} X(\alpha) d \alpha
$$

for all t.
(a) Find $R_{Y}(\tau)$.

Solution.

$$
\begin{aligned}
h(\tau) & =u(\tau)-u(\tau-3) \\
h(\tau) * h(-\tau) & =\phi(\tau)
\end{aligned}
$$

where

$$
\begin{aligned}
& \phi(\tau)=\left\{\begin{aligned}
3\left[1-\frac{|\tau|}{3}\right], & -3 \leq \tau \leq 3 \\
0, & \text { elsewhere }
\end{aligned}\right. \\
& R_{Y}(\tau) \\
& =\phi(\tau) * R_{X}(\tau) \\
& \\
& =A \int \phi(\tau) d \tau+B \phi(\tau) \\
&
\end{aligned}
$$

(b) Find $S_{Y}(\omega)$.

Solution.

$$
S_{Y}(\omega)=\mathcal{F}\left[R_{Y}(\tau)\right]=18 \pi A \delta(\omega)+B\left[\frac{2 \sin (3 \omega / 2)}{\omega}\right]^{2}
$$

(c) Find the average power generated by the process $Y(t)$.

Solution.

$$
P_{Y}=R_{Y}(0)=9 A+B \phi(0)=9 A+3 B
$$

(d) Find the mean μ_{Y} of the process $Y(t)$.

Solution.

$$
\mu_{Y}=\mu_{X}\left[\int h(t) d t\right]= \pm 3 \sqrt{A}
$$

Problem 4.6: The input $X(t)$ to the filter above is WSS with autocorrelation function

$$
R_{X}(\tau)=6 \delta(\tau)+10, \quad-\infty<\tau<\infty
$$

(a) Find μ_{X} and μ_{Y}.

Solution.

$$
\begin{aligned}
h(t) & =(R / L) e^{-t R / L} u(t) \\
\mu_{X} & = \pm \sqrt{10} \\
\mu_{Y} & =\mu_{X} \int_{-\infty}^{\infty} h(t) d t= \pm \sqrt{10}
\end{aligned}
$$

(b) Find output power.

Solution.

$$
\begin{aligned}
P_{Y} & =\frac{1}{2 \pi} \int_{-\infty}^{\infty}|H(\omega)|^{2} S_{X}(\omega) d \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(\frac{R^{2}}{L^{2} \omega^{2}+R^{2}}\right)(6+20 \pi \delta(\omega)) d \omega \\
& =3 R / L+10
\end{aligned}
$$

Problem 4.7: In the block diagram below

$X(t)$ is white noise with $R_{X}(\tau)=A \delta(\tau)$.
(a) Find $S_{W}(\omega)$.

Solution. Let $H(\omega)$ be the frequency response of the circuit part of the overall system.

$$
\begin{aligned}
S_{Y}(\omega) & =\frac{A}{\omega^{2}} \\
H(\omega) & =\frac{L j \omega}{L j \omega+R} \\
|H(\omega)|^{2} & =\frac{L^{2} \omega^{2}}{L^{2} \omega^{2}+R^{2}} \\
S_{W}(\omega) & =|H(\omega)|^{2} S_{Y}(\omega)=\frac{A L^{2}}{L^{2} \omega^{2}+R^{2}}
\end{aligned}
$$

(b) Find $R_{W}(\tau)$.

Solution. Take the inverse Fourier transform of $S_{W}(\omega)$:

$$
R_{W}(\tau)=\frac{A L}{2 R} \exp (-R|\tau| / L)
$$

(c) Compute P_{W} two different ways.

Solution.

$$
\begin{aligned}
P_{W} & =R_{W}(0)=\frac{A L}{2 R} \\
P_{W} & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{W}(\omega) d \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{A}{\omega^{2}+(R / L)^{2}} d \omega=A L / 2 R
\end{aligned}
$$

Problem 4.8: A band-limited continuous-time WSS process $x(t)$ has power spectral density

$$
S_{x}(f)=\left\{\begin{array}{cl}
|f|, & -B \leq f \leq B \\
0, & \text { elsewhere }
\end{array}\right.
$$

Compute the bandwidth B so that if $x(t)$ is passed through a differentiator, the power at the differentiator output will be equal to the power at the differentiator input.

Solution.

$$
\begin{aligned}
\text { input power } & =2 \int_{0}^{B} S_{x}(f) d f=2 \int_{0}^{B} f d f \\
\text { output power } & =2 \int_{0}^{B}(2 \pi f)^{2} S_{x}(f) d f=8 \pi^{2} \int_{0}^{B} f^{3} d f
\end{aligned}
$$

Solving for B you get

$$
B=\frac{1}{\sqrt{2} \pi}
$$

Problem 4.9: A zero mean WSS process $x[n]$ has autocorrelation function

$$
R_{x}(\tau)=\left\{\begin{aligned}
1, & \tau=0 \\
1 / 2, & \tau= \pm 1 \\
0, & \text { elsewhere }
\end{aligned}\right.
$$

Let $y[n]$ be the process

$$
y[n]=\alpha[x[n]+x[n-1]]
$$

where α is a parameter that will be determined.
(a) Find the impulse response of the system that carries $x[n]$ into $y[n]$ and use this to find the autocorrelation function of $y[n]$.
Solution. $h[n]=\alpha, \quad n=0,1$ (zero elsewhere) and so

$$
R_{y}[\tau]=h[\tau] * h[-\tau] * R_{x}(\tau)
$$

The right side of the above equation in z domain is

$$
\alpha^{2}\left(1+z^{-1}\right)(1+z)\left(1+.5 z^{-1}+.5 z\right)=\alpha^{2}\left(.5 z^{-2}+2 z^{-1}+3+2 z+.5 z^{2}\right)
$$

Therefore

$$
R_{y}(\tau)=\left\{\begin{aligned}
3 \alpha^{2}, & \tau=0 \\
2 \alpha^{2}, & \tau= \pm 1 \\
(.5) \alpha^{2}, & \tau= \pm 2 \\
0, & \text { elsewhere }
\end{aligned}\right.
$$

(b) Find the value of α that minimizes $E\left[\{x[n]-y[n-1]\}^{2}\right]$.

Solution. It is desired to compute the power generated by the process $z[n]=$ $x[n]-y[n-1]$. You get the process $z[n]$ by putting $x[n]$ thru a filter with transfer function $1-\alpha z^{-1}-\alpha z^{-2}$. So, the z-transform of $R_{z}(\tau)$ is
$\left(1-\alpha z^{-1}-\alpha z^{-2}\right)\left(1-\alpha z-\alpha z^{2}\right)\left(1+.5 z^{-1}+.5 z\right)=\left(3 \alpha^{2}-\alpha+1\right)+$ other terms
We conclude

$$
E\left[(x[n]-y[n-1])^{2}\right]=R_{z}(0)=3 \alpha^{2}-\alpha+1
$$

This is minimized when $\alpha=1 / 6$.
(c) Compute the average power generated by the process $y[n]$, using the value of α you found in (b).
Solution. (c) $3 \alpha^{2}=1 / 12$.

Problem 4.10: Let $x(t)$ be a zero-mean WSS process with

$$
S_{x}(f)=\exp (-\pi|f|)
$$

Compute

$$
E\left[\left\{\int_{t-1}^{t} x(u) d u\right\}^{2}\right]
$$

Solution. You must find $R_{y}(0)$ where $y(t)$ is the process

$$
y(t)=h(t) * x(t)
$$

and where

$$
h(t)= \begin{cases}1, & 0<t<1 \\ 0, & \text { elsewhere }\end{cases}
$$

Letting $Q(t)=h(t) * h(-t)$, we have

$$
\begin{aligned}
R_{y}(0) & =\int_{-\infty}^{\infty} Q(\tau) R_{x}(\tau) d \tau \\
& =2 \int_{0}^{1}(1-|\tau|) \frac{2}{\pi\left(1+4 \tau^{2}\right)} d \tau=\frac{4}{\pi}\left[\frac{\operatorname{Tan}^{-1} 2}{2}-\frac{\ln 5}{8}\right]
\end{aligned}
$$

Problem 4.11: Let $X(t),-\infty<t<\infty$, be a white noise process and let $Y(t)$ be the process

$$
Y(t)=X(t+1)+X(t-1)
$$

(a) Find $S_{Y}(f)$.

Solution. $H(f)=2 \cos (2 \pi f)$ and so

$$
S_{Y}(f)=|H(f)|^{2} S_{X}(f)=4 \sigma^{2} \cos ^{2}(2 \pi f)
$$

(b) Pass $Y(t)$ through an ideal low-pass filter of bandwidth 1 Hz . Compute the output power.
Solution. output power $=\int_{-1}^{1} 4 \sigma^{2} \cos ^{2}(2 \pi f) d f=4 \sigma^{2}$
(c) Pass $Y(t)$ through an ideal band-pass filter whose passband is $\{f:|f-4| \leq 1 / 3\}$. Compute the output power.
Solution. output power $=2 \int_{4-1 / 3}^{4+1 / 3} 4 \sigma^{2} \cos ^{2}(2 \pi f) d f=8 \sigma^{2} / 3$

Problem 4.12: A white noise process with autocorrelation function equal to the delta function is the input to a linear time-invariant system. Compute the power generated by the output process if:
(a) The system is discrete-time with impulse response $h[n]=3^{-n} u[n]$.

Solution. $R_{y}(0)=\sum_{n} h[n]^{2}=\sum_{n=0}^{\infty} 9^{-n}=9 / 8$.
(b) The system is continuous-time with impulse reponse $h(t)=\exp (-3 t) u(t)$.

Solution. $R_{y}(0)=\int h(t)^{2} d t=\int_{0}^{\infty} \exp (-6 t) d t=1 / 6$.

Problem 4.13: An ergodic WSS process $X(t)$ satisfies

$$
R_{X}(\tau)=1+\cos \tau
$$

Let $Z(t)$ be the process

$$
Z(t)=\int_{t-1}^{t}(\sin u) X(u) d u
$$

Assuming that $\mu_{X}<0$, find the mean function $\mu_{Z}(t)$.
Solution. Time-averaging $R_{X}(\tau)$, we see that $\mu_{X}^{2}=1$. Since $\mu_{X}<0, \mu_{X}=-1$.

$$
\mu_{Z}(t)=E[Z(t)]=\int_{t-1}^{t}(\sin u)\left(\mu_{X}\right) d u=\cos t-\cos (t-1)
$$

Problem 4.14: A WSS process $X(t)$ has power spectral density plotted above. Let $Y(t)$ be the WSS process

$$
Y(t)=\int_{-\infty}^{t} X(u) d u, \quad-\infty<t<\infty
$$

(a) Compute the power generated by the process $X(t)$.

Solution. The total area of the rectangles is 80 . Dividing by 2π,

$$
P_{X}=\frac{40}{\pi} .
$$

(b) Compute the power generated by the process $Y(t)$.

Solution.

$$
P_{Y}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{Y}(\omega) d \omega=\frac{1}{\pi} \int_{20}^{30} 4|H(\omega)|^{2} d \omega=\frac{1}{\pi} \int_{20}^{30} \frac{4}{\omega^{2}} d \omega=\frac{1}{15 \pi}
$$

Problem 4.15: Let $X(t)$ be WSS with $R_{X}(\tau)=\exp (-2|\tau|)$. Let $Y(t)$ be the result of passing $X(t)$ through an LTI filter with impulse response $h(t)=\exp (-t) u(t)$. Compute $E\left[(X(t)-Y(t))^{2}\right]$.
Solution. Let $E(t)$ be the process $E(t)=X(t)-Y(t)$. Then $E(t)=(\delta(t)-h(t)) * X(t)$, and so

$$
S_{E}(\omega)=|1-H(\omega)|^{2} S_{X}(\omega)
$$

Plugging in

$$
\begin{aligned}
H(\omega) & =\frac{1}{j \omega+1} \\
S_{X}(\omega) & =\frac{4}{\omega^{2}+4}
\end{aligned}
$$

you get

$$
\begin{gathered}
S_{E}(\omega)=\frac{4 \omega^{2}}{\left(\omega^{2}+1\right)\left(\omega^{2}+4\right)}=\frac{-4 / 3}{\omega^{2}+1}+\frac{16 / 3}{\omega^{2}+4} \\
P_{E}=(1 / 2 \pi)(-4 / 3)\left[\int_{-\infty}^{\infty} \frac{1}{\omega^{2}+1} d \omega-4 \int_{-\infty}^{\infty} \frac{1}{\omega^{2}+4} d \omega\right]=2 / 3
\end{gathered}
$$

Problem 4.16: A WSS process $\left(X_{n}\right)$ has power spectral density function

$$
S_{X}(\omega)=\frac{1}{5-4 \cos \omega}
$$

Let $\left(Y_{n}\right)$ be the WSS process in which

$$
Y_{n}=X_{n}+X_{n-1}
$$

for every n. Find $S_{Y}(\omega)$ and P_{Y}.
Solution. The transfer function is $H(z)=1+z^{-1}$ and so the frequency response function is $H(\omega)=1+\exp (-j \omega)$. This gives

$$
\begin{gathered}
|H(\omega)|^{2}=2(1+\cos \omega) \\
S_{Y}(\omega)=S_{X}(\omega)|H(\omega)|^{2} \\
=\frac{2(1+\cos \omega)}{5-4 \cos \omega} \\
=(-1 / 2)+\frac{9 / 2}{5-4 \cos \omega} \\
P_{Y}=(1 / 2 \pi) \int_{-\pi}^{\pi} S_{Y}(\omega) d \omega=-1 / 2+(9 / 2) R_{X}(0)
\end{gathered}
$$

Using tables,

$$
R_{X}(\tau)=\mathcal{F}^{-1}\left[\frac{1}{5-4 \cos \omega}\right]=(1 / 3)(0.5)^{-|\tau|}
$$

So,

$$
P_{Y}=-1 / 2+(9 / 2)(1 / 3)=1
$$

Problem 4.17: In an additive noise channel, the signal is

$$
X(t)=3 \sin 2 t
$$

and the noise $Z(t)$ has power spectrum

$$
S_{Z}(\omega)=\left\{\begin{aligned}
10, & -1 \leq w \leq 1 \\
0, & \text { elsewhere }
\end{aligned}\right.
$$

Send the process $X(t)+Z(t)$ process through a differentiator.
(a) Compute the SNR in decibels at the differentiator input.

Solution. The power generated by a deterministic sinusoid is $1 / 2$ the square of the amplitude. Therefore,

$$
P_{X}=3^{2} / 2=4.5
$$

We get the noise power by integrating the noise power spectrum and dividing by 2π. Therefore,

$$
P_{Y}=10 * 2 / 2 \pi=10 / \pi
$$

The differentiator input SNR is therefore

$$
10 \log _{1} 0 \frac{4.5}{10 / \pi}=1.5 \text { decibels }
$$

(b) Compute the SNR in decibels at the differentiator output.

Solution. At the differentiator output, the signal part is $6 \cos 2 t$ and its power is $36 / 2=18$. At the differentiator output, the noise part has power

$$
(1 / 2 \pi) \int_{-\infty}^{\infty} \omega^{2} S_{Z}(\omega) d \omega=(1 / 2 \pi) \int_{-1}^{1} 10 \omega^{2} d \omega=10 / 3 \pi
$$

The SNR is therefore

$$
10 \log _{10} \frac{18}{10 / 3 \pi}=12.3 \text { decibels }
$$

Problem 4.18: A discrete-time WSS process X has power spectral density

$$
S_{X}(\omega)=4 \pi \delta(\omega-\pi / 3)+3 \pi \delta(\omega-3 \pi / 4), \quad 0 \leq \omega \leq \pi
$$

Let Y be the discrete-time WSS process obtained by passing X through the discretetime LTI filter with frequency response function

$$
H(\omega)=\frac{5}{2+\exp (-j \omega)}
$$

(a) Compute the power P_{X} generated by process X.

Solution. Integrating $S_{X}(\omega)$ from 0 to π and dividing by 2π gives half the power (because the integral from $-\pi$ to 0 gives the other half). So $P_{Y}=7$.
(b) Compute the power P_{Y} generated by process Y.

Solution.

$$
\begin{gathered}
|H(\omega)|^{2}=\frac{25}{5+4 \cos \omega} \\
|H(\pi / 3)|^{2}=25 / 7 \\
|H(3 \pi / 4)|^{2}=25 /(5-2 \sqrt{2})=11.51 \\
P_{Y}=(1 / \pi)(4 \pi)(25 / 7)+(1 / \pi)(3 \pi)(11.51)=48.8
\end{gathered}
$$

Problem 4.19: A continuous-time ergodic WSS process $X(t)$ has aucorrelation function

$$
R_{X}(\tau)=\frac{72 \tau^{2}+36}{12 \tau^{2}+1}
$$

It is processed as follows:

$$
X(t) \rightarrow \int_{t-8}^{t} \rightarrow Y(t)
$$

(a) Find power P_{X} generated by process X.

Solution. $P_{X}=R_{X}(0)=36$.
(b) Find μ_{X}^{2}.

Solution.

$$
\mu_{X}^{2}=\lim _{\tau \rightarrow \infty} R_{X}(\tau)=72 / 12=6
$$

(c) Find μ_{Y}^{2}.

Solution. The impulse response function $h(t)$ is a rectangular pulse of amplitude 1 starting at time $t=0$ and ending at time $t=8$.

$$
\mu_{Y}=\mu_{X} \int_{-\infty}^{\infty} h(t) d t=8 \mu_{X}
$$

Squaring both sides, we see that $\mu_{Y}^{2}=384$.

Problem 4.20: In the block diagram

$$
X(t)+Z(t) \rightarrow H(\omega) \rightarrow X_{0}(t)+Z_{0}(t)
$$

the PSD's of WSS signal $X(t)$ and WSS noise $Z(t)$ are given by

$$
S_{X}(\omega)=\left\{\begin{array}{cl}
10-|\omega|, & -10 \leq \omega \leq 10 \\
0, & \text { elsewhere }
\end{array} \quad S_{Z}(\omega)=\left\{\begin{array}{cl}
5, & -10 \leq \omega \leq 10 \\
0, & \text { elsewhere }
\end{array}\right.\right.
$$

The filter is an ideal low-pass filter with frequency response $H(\omega)$ equal to 1 from $-B$ to B (zero elsewhere), where B, the filter bandwidth, is to be determined by you in the following.
(a) Compute the signal-to-noise ratio at the filter input (i.e., the $X(t)$ power divided by the $Z(t)$ power). (Hint: If you use the plots of $S_{X}(\omega)$ and $S_{Z}(\omega)$, you may be able to compute power without doing any integration.)

Solution.

$$
\text { signal-to-noise ratio }=\frac{\text { area under } S_{X}(\omega)}{\text { area under } S_{Z}(\omega)}=\frac{100}{100}=1
$$

(b) $X_{0}(t)$ is the signal part of the filter output (i.e., the filter's response to $\left.X(t)\right)$ and $Z_{0}(t)$ is the noise part of the filter output. Compute the filter bandwidth B so that the filter output signal-to-noise ratio will be 1.75 times the filter input signal-to-noise ratio.
Solution. The output signal-to-noise ratio is

$$
\frac{\int_{-B}^{B}(10-|\omega|) d \omega}{\int_{-B}^{B} 5 d \omega}=\frac{100-(10-B)^{2}}{10 B}=1.75
$$

Solving this equation for B, you get $B=2.5$. (I did not do any of the integrals above; I just used the formula for the area of a triangle.)

Problem 4.21: Two independent discrete-time ergodic WSS processes X_{n} and Y_{n} have autocorrelation functions

$$
\begin{aligned}
R_{X}(\tau) & =40 \delta[\tau]+25 \\
R_{Y}(\tau) & =70 \delta[\tau]+16
\end{aligned}
$$

and it is known that μ_{X} and μ_{Y} are both positive. Let Z_{n} be the WSS process

$$
Z_{n}=3 X_{n}-2 Y_{n}, \quad n=0, \pm 1, \pm 2, \pm 3, \ldots
$$

(a) Find $\mu_{X}, \mu_{Y}, \mu_{Z}$.

Solution. We have

$$
\mu_{X}^{2}=25, \quad \mu_{Y}^{2}=16
$$

and so

$$
\mu_{X}=5, \quad \mu_{Y}=4
$$

Therefore,

$$
\mu_{Z}=3 \mu_{X}-2 \mu_{Y}=7
$$

(b) Find the power generated by the process Z_{n}.

Solution.

$$
\begin{aligned}
E\left[Z_{n}^{2}\right] & =9 E\left[X_{n}^{2}\right]+4 E\left[Y_{n}^{2}\right]-12 E\left[X_{n} Y_{n}\right] \\
& =9 P_{X}+4 P_{Y}-12 \mu_{X} \mu_{Y} \\
& =9(40+25)+4(70+16)-12 * 5 * 4=689
\end{aligned}
$$

Problem 4.22: Let X be a discrete-time WSS process with autocorrelation function

$$
R_{X}(\tau)=\exp (-|\tau|)
$$

X is to be filtered to yield a discrete-time WSS filter output process Y for which $R_{Y}(1)=0$. The filter impulse response function is to be of the form

$$
h[n]=\delta[n]+a \delta[n-1] .
$$

Determine the value of the filter tap weight a.
Solution. Since

$$
R_{Y}(\tau)=R_{X}(\tau) *(h[\tau] * h[-\tau]),
$$

and since

$$
h[\tau] * h[-\tau]=\left(1+a^{2}\right) \delta[\tau]+a \delta[\tau+1]+a \delta[\tau-1],
$$

it follows that

$$
R_{Y}(\tau)=\left(1+a^{2}\right) R_{X}(\tau)+a R_{X}(\tau+1)+a R_{X}(\tau-1)
$$

Plugging in $\tau=1$, we get

$$
0=R_{Y}(1)=\left(1+a^{2}\right) \exp (-1)+a(1+\exp (-2)) .
$$

Solving for a, you get

$$
a=-\exp (-1)
$$

Problem 4.23: Let a WSS process $\mathrm{X}(\mathrm{t})$ have PSD

$$
S_{X}(\omega)=\frac{90 \omega^{2}}{10+\omega^{4}}
$$

(a) Write Matlab code which will compute the power P_{X} generated by the X process.

Solution.

```
syms omega
power=int((1/(2*pi))*90*omega^2/(10+omega^4),-inf,inf);
PX=eval (power)
```

(b) Suppose we pass the process $X(t)$ through an ideal lowpass filter with bandwidth $50 \mathrm{rad} / \mathrm{sec}$, and let $Y(t)$ be the output process. Write Matlab code which computes the power P_{Y} generated by the Y process.

Solution.

```
syms omega
power=int((1/(2*pi))*90*omega^2/(10+omega^4),-50,50);
PY=eval (power)
```

(c) Use Matlab to find the bandwidth B in rad/sec of an ideal lowpass filter which passes 90% of X's power through it. Round your answer for B to nearest integer.
Solution. Run the following line of Matlab code
eval(int ((1/(2*pi)) *90*omega^2/(10+omega^4), -B,B))/PX
for each of the following B values:

$$
B=10,11,12,13,14,15,16,17,18,19,20
$$

You will find one of these that does the job.

Problem 4.24: Let $\left(Z_{n}\right)$ be white noise with variance 9. Let $\left(X_{n}\right)$ be the WSS process

$$
X_{n}=5 Z_{n}-4 Z_{n-1}+2 Z_{n-2}
$$

Use Matlab to obtain $R_{X}(\tau)$ for $\tau=-2,-1,0,1,2$.
Solution. Run

$$
9 * \operatorname{conv}\left(\left[\begin{array}{lll}
5 & -4 & 2
\end{array}\right],\left[\begin{array}{lll}
2 & -4 & 5
\end{array}\right]\right)
$$

This is an implementation of the formula

$$
R_{X}(\tau)=R_{Z}(\tau) * h(\tau) * h(-\tau)=9[h(\tau) * h(-\tau)] .
$$

Problem 4.25: Let Z be discrete-time white noise with unit variance. Find an FIR filter which converts Z into process X with autocorrelation function

$$
R_{X}(\tau)=\left\{\begin{aligned}
5 / 4, & \tau=0 \\
-1 / 2, & \tau= \pm 1 \\
0, & \text { elsewhere }
\end{aligned}\right.
$$

Solution. From experience we know that the filter transfer function is of the form

$$
H(z)=a+b z^{-1} .
$$

Computing $H(z) H\left(z^{-1}\right)$ will give us $S_{X}(\omega)$ (after converting from the z variable to the ω variable).

$$
H(z) H\left(z^{-1}\right)=\left(a^{2}+b^{2}\right)+a b\left(z+z^{-1}\right) .
$$

This must coincide with the z-transform of $R_{X}(\tau)$, which by inspection is

$$
5 / 4-1 / 2\left(z+z^{-1}\right)
$$

Therefore, we must solve the equations

$$
\begin{aligned}
a^{2}+b^{2} & =5 / 4 \\
a b & =-1 / 2
\end{aligned}
$$

Simple algebra gives us two solutions:

$$
a=1, \quad b=-1 / 2,
$$

or

$$
a=-1, \quad b=1 / 2,
$$

Taking the first solution, we can take our FIR filter to have impulse response function

$$
h[n]=a \delta[n]+b \delta[n-1]=\delta[n]-0.5 \delta[n-1] .
$$

5 Gaussian Processes

Problem 5.1: A WSS Gaussian process $X(t)$ has $\mu_{X}>0$ and

$$
R_{X}(\tau)=4+5\left(2^{-|\tau|}\right)
$$

(a) Let $f(x)$ be the density of $X(1)$. Write down $f(x)$.

Solution.

$$
\begin{aligned}
E[X(1)]^{2} & =\lim _{\tau \rightarrow \infty} R_{X}(\tau)=4 \\
E[X(1)] & =2 \\
E\left[X(1)^{2}\right] & =R_{X}(0)=9 \\
\operatorname{Var}[X(1)] & =E\left[X(1)^{2}\right]-E[X(1)]^{2}=9-4=5 \\
f(x) & =\frac{1}{\sqrt{10 \pi}} \exp \left(-(x-2)^{2} / 10\right)
\end{aligned}
$$

(b) Let $g(y)$ be the density of $Y=X(3)+X(2)$. Write down $g(y)$.

Solution.

$$
\begin{aligned}
E[Y] & =2 \mu_{X}=4 \\
E\left[Y^{2}\right] & =E\left[X(2)^{2}\right]+E\left[X(3)^{2}\right]+2 E[X(2) X(3)] \\
& =2 R_{X}(0)+2 R_{X}(1)=18+2(4+5 / 2)=31 \\
\sigma_{Y}^{2} & =E\left[Y^{2}\right]-\mu_{Y}^{2}=31-16=15 \\
g(y) & =\frac{1}{\sqrt{30 \pi}} \exp \left(-(y-4)^{2} / 30\right)
\end{aligned}
$$

Problem 5.2: $X[n]=A(-1)^{n}+B$ is the WSS Gaussian process in which A, B are independent standard Gaussian random variables.
(a) Find $R_{X}(\tau)$.

Solution.

$$
\begin{aligned}
R_{X}(\tau) & =E[X[n] X[n+\tau]] \\
& =E\left[A^{2}\right](-1)^{2 n+\tau}+E\left[B^{2}\right]+E[A B]\left((-1)^{n}+(-1)^{n+\tau}\right) \\
& =(-1)^{\tau}+1
\end{aligned}
$$

(The last term dropped out because $E[A B]=E[A] E[B]=0$.)
(b) Determine the probability distribution of each 1-D cross-section of the process.

Solution. If n is odd, then $X[n]=B-A$, and this cross-section has a Gaussian distribution with mean 0 and variance 2 . If n is even, then $X[n]=A+B$, which also has a Gaussian distribution with mean 0 and variance 2 .
(c) Explain why the process is not ergodic.

Solution. Notice that

$$
X[n] X[n+\tau]=A^{2}(-1)^{\tau}+B^{2}+A B\left[(-1)^{n}\right]\left[1+(-1)^{\tau}\right]
$$

Fixing τ, and time-averaging this expression over n, the last term drops out (since $(-1)^{n}$ oscillates between +1 and -1$)$. However, the other two terms do not drop out, and so we conclude that the time-average of $X[n] X[n+\tau]$ is

$$
A^{2}(-1)^{\tau}+B^{2}
$$

Since this depends on the realization, the process can't be ergodic.
(d) Compute $E\left[X[n]^{4}\right]$.

Solution. From solution to (b), $X[n] / \sqrt{2}$ is standard Gaussian. The fourth moment of a standard Gaussian random variable is 3 . (You can obtain this by differentiating the moment generating function $e^{s^{2} / 2}$ four times and then plugging in $s=0$.) That is,

$$
E\left[(X[n] / \sqrt{2})^{4}\right]=3 .
$$

It follows that

$$
E\left[X[n]^{4}\right]=12 .
$$

Problem 5.3: An ergodic WSS Gaussian process

$$
X(t), \quad-\infty<t<\infty
$$

has autocorrelation function

$$
R_{X}(\tau)=100 e^{-\tau^{2}} \cos (2 \pi \tau)+10 \cos (6 \pi \tau)+36
$$

(a) Find the constant value of $E[X(t)]$ (assuming that this constant value is positive).

Solution. Since the process is ergodic, you can compute the following time average to get μ_{X}^{2} :

$$
\mu_{X}^{2}=\lim _{T \rightarrow \infty} T^{-1} \int_{0}^{T} R_{X}(\tau) d \tau
$$

There are three terms in $R_{X}(\tau)$ which we can time average separately:

- The time average of $100 e^{-\tau^{2}} \cos (2 \pi \tau)$ is zero because this is the limit as $\tau \rightarrow \infty$.
- The time average of $10 \cos (6 \pi \tau)$ is zero because the time average of any sinusoid is zero.
- The time average of 36 is 36 .

Our conclusion is that

$$
\mu_{X}^{2}=36
$$

Therefore, $\mu_{X}= \pm 6$. We are told that $\mu_{X}>0$, and so

$$
E[X(t)]=\mu_{X}=6
$$

(b) Find the constant value of $E\left[X(t)^{2}\right]$.

$$
E\left[X(t)^{2}\right]=P_{X}=R_{X}(0)=146
$$

(c) Find the constant value of $\operatorname{Var}[X(t)]$.

Solution.

$$
\operatorname{Var}[X(t)]=\sigma_{X}^{2}=R_{X}(0)-\mu_{X}^{2}=110 .
$$

(d) Find the smallest positive value of τ for which the random variables $X(t)$ and $X(t+\tau)$ are uncorrelated.
Solution. Uncorrelated means (see Chapters 3,5)

$$
E[X(t) X(t+\tau)]=E[X(t)] E[X(t+\tau)]
$$

The left side is $R_{X}(\tau)$, and the right side is $\mu_{X}^{2}=36$. So, we find the desired τ by solving the equation

$$
\begin{equation*}
100 e^{-\tau^{2}} \cos (2 \pi \tau)+10 \cos (6 \pi \tau)=0 \tag{4}
\end{equation*}
$$

One solution that can be seen by inspection is $\tau=0.25$. If one uses Matlab to plot the function of τ on the left side of equation (4), one sees that $\tau=0.25$ is the smallest positive value of τ which makes this function equal to zero. So, the answer is

$$
\tau=0.25
$$

(e) What is the mean and variance of the random variable $Y=X(0)+X(1)$? What is $P(Y \leq 40)$?

$$
\begin{gathered}
\mu_{Y}=E[X(0)]+E[X(1)]=2 * \mu_{X}=12 . \\
\operatorname{Cov}(X(0), X(1))=E[X(0) X(1)]-\mu_{X}^{2}=R_{X}(1)-36=46.7879 . \\
\sigma_{Y}^{2}=\operatorname{Var}[X(0)]+\operatorname{Var}[X(1)]+2 \operatorname{Cov}(X(0), X(1))=313.5759 . \\
P(Y \leq 40)=P\left(\frac{Y-\mu_{Y}}{\sigma_{Y}} \leq \frac{28}{\sqrt{313.5759}}\right)=\Phi(1.5812)=0.94 .
\end{gathered}
$$

6 Independent Increments Processes

Problem 6.1: Two famous "independent increments processes" are the random walk process and the Poisson process. This problem concerns these two processes.
(a) Let

$$
X_{n}, \quad n=0,1,2,3, \cdots
$$

be the random walk process. (Recall that $X_{0}=0$, and that each X_{n} for $n>1$ is the sum of the first n samples of the Bernoulli fair-coin-flipping process.) Compute the probability that the random walk process makes its first return to zero at time 6 . In other words, compute

$$
P\left[X_{1} \neq 0, X_{2} \neq 0, X_{3} \neq 0, X_{4} \neq 0, X_{5} \neq 0, X_{6}=0\right]
$$

Solution. The "increments" are:

$$
\begin{aligned}
B_{1} & =X_{1}-X_{0} \\
B_{2} & =X_{2}-X_{1} \\
B_{3} & =X_{3}-X_{2} \\
B_{4} & =X_{4}-X_{3} \\
B_{5} & =X_{5}-X_{4} \\
B_{6} & =X_{6}-X_{5}
\end{aligned}
$$

The sequence of increments ($B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}$) must be one of the following:

$$
\begin{aligned}
& (+1,+1,+1,-1,-1,-1) \\
& (-1,-1,-1,+1,+1,+1) \\
& (+1,+1,-1,+1,-1,-1) \\
& (-1,-1,+1,-1,+1,+1)
\end{aligned}
$$

By "independent increments" each of these 4 possibilities has probability $(1 / 2)^{6}$. The answer is therefore

$$
4 *(1 / 2)^{6}=1 / 16
$$

(b) Let

$$
X(t), \quad t \geq 0
$$

be the Poisson process with arrival rate of 0.5 arrivals per second (our time variable t is in seconds). Compute the probability that there are just as many arrivals in the first three seconds as there are in the next four seconds. In other words, compute

$$
P[X(7)=2 X(3)] .
$$

Solution. The desired probability can be decomposed as the following sum:

$$
\sum_{k=0}^{\infty} P[X(3)-X(0)=k, X(7)-X(3)=k] .
$$

By "independent increments", the k-th term can be re-written as:

$$
P[X(3)-X(0)=k] P[X(7)-X(3)=k] .
$$

$X(3)-X(0)$ is a Poisson RV with parameter

$$
\alpha=(3-0) * 0.5=1.5 .
$$

Therefore

$$
P[X(3)-X(0)=k]=\exp (-1.5)(1.5)^{k} / k!.
$$

$X(7)-X(3)$ is a Poisson RV with parameter

$$
\alpha=(7-3) * 0.5=2 .
$$

Therefore

$$
P[X(7)-X(3)=k]=\exp (-2) 2^{k} / k!.
$$

Our answer is therefore

$$
\exp (-3.5) \sum_{k=0}^{\infty} \frac{3^{k}}{(k!)^{2}}=0.2162
$$

Problem 6.2: $X(t)$ is Poisson process with arrival rate $\lambda=4$.
(a) Compute $P[X(1)=4]$ and $P[X(2)=2]$.

Solution. The parameter of the Poisson RV $X(1)$ is 4. Therefore:

$$
P[X(1)=4]=\exp (-4) * 4^{4} / 4!=0.1954
$$

The parameter of the Poisson RV $X(2)$ is 8 . Therefore:

$$
P[X(2)=2]=\exp (-8) * 8^{2} / 2=0.0107
$$

(b) Compute $P[X(2)>X(1)+1]$.

Solution.

$$
P[X(2)>X(1)+1]=P[X(2)-X(1)>1]=1-P[X(2)-X(1) \leq 1]
$$

$X(2)-X(1)$ is Poisson with parameter 4. Therefore:

$$
P[X(2)>X(1)+1]=1-\exp (-4)-\exp (-4) * 4=0.9084
$$

(c) Compute $P[X(3)>X(2)>X(1)]$.

Solution. Since the increments $X(3)-X(2)$ and $X(2)-X(1)$ are independent,

$$
\begin{aligned}
P[X(3)>X(2)>X(1)] & =P[X(3)-X(2)>0, \quad X(2)-X(1)>0] \\
& =P[X(3)-X(2)>0] P[X(2)-X(1)>0]
\end{aligned}
$$

Both $X(3)-X(2)$ and $X(2)-X(1)$ are Poisson with parameter 4. Therefore:

$$
P[X(3)>X(2)>X(1)]=(1-\exp (-4))^{2}=0.9637
$$

(d) Compute $E[X(2) \mid X(1)=5]$.

Solution. $X(2)-X(1)$ and $X(1)$ are independent. Therefore:

$$
\begin{aligned}
E[X(2) \mid X(1)=5] & =E[X(2)-X(1) \mid X(1)=5]+E[X(1) \mid X(1)=5] \\
& =E[X(2)-X(1)]+5 \\
& =4+5=9
\end{aligned}
$$

(e) Compute $E[X(2) X(5)]$.

Solution. Using independent increments property of Poisson process again,

$$
\begin{aligned}
E[X(2) X(5)] & =E\left[X(2)^{2}\right]+E[X(2)(X(5)-X(2)] \\
& =E\left[X(2)^{2}\right]+E[X(2)] E[X(5)-X(2)]
\end{aligned}
$$

$X(2)$ is Poisson with parameter 8 , mean 8 , variance 8 , and second moment $8+8^{2}=$ 72. $X(5)-X(2)$ is Poisson with parameter 12, mean 12. Therefore:

$$
E[X(2) X(5)]=72+8 * 12=168
$$

Problem 6.3: Let $W(t)$ be a Brownian motion process with parameter $\alpha=1$. Compute
(a) The correlation coefficient between $W(3)$ and $W(9)$, using independent increments property.
Solution. The mean function of the Brownian motion process is zero. Also,

$$
E\left[W(t)^{2}\right]=\operatorname{Var}(W(t))=\alpha t=t
$$

for all $t \geq 0$.

Therefore

$$
\operatorname{Cov}(W(3), W(9))=E[W(3) W(9)] .
$$

We have

$$
W(3) W(9)=W(3)[W(9)-W(3)+W(3)]=W(3)[W(9)-W(3)]+W(3)^{2} .
$$

By independent increments, $W(9)-W(3)$ and $W(3)=W(3)-W(0)$ are independent; they also each have zero mean. Therefore,

$$
E\{W(3)[W(9)-W(3)]\}=E[W(3)] E[W(9)-W(3)]=0
$$

and so

$$
E[W(3) W(9)]=E\{W(3)[W(9)-W(3)]\}+E\left[W(3)^{2}\right]=E\left[W(3)^{2}\right]=3
$$

We conclude that

$$
\rho_{W(3), W(9)}=\frac{\operatorname{Cov}(W(3), W(9))}{\sqrt{\operatorname{Var}(W(3))} \sqrt{\operatorname{Var}(W(9))}}=\frac{3}{\sqrt{3} \sqrt{9}}=\frac{1}{\sqrt{3}}
$$

(b) Compute $E\left[(W(1)+W(2)+W(3))^{2}\right]$ using independent increments.

Solution.

$W(1)+W(2)+W(3)=W(1)+2 W(2)+[W(3)-W(2)]=3 W(1)+2[W(2)-W(1)]+[W(3)-W(2)]$.
Also,

$$
W(1)=W(1)-W(0)
$$

so we have expressed $W(1)+W(2)+W(3)$ as a linear combination of three increments:

$$
W(1)+W(2)+W(3)=3[W(1)-W(0)]+2[W(2)-W(1)]+[W(3)-W(2)],
$$

Each of the three increments $W(1)-W(0), W(2)-W(1)$, and $W(3)-W(2)$ is a Gaussian $(0,1)$ RV, and these three RV's are independent. It follows that

$$
E\left[(W(1)+W(2)+W(3))^{2}\right]=3^{2} E\left[\left(W(1)-W(0)^{2}\right]+2^{2} E\left[(W(2)-W(1))^{2}\right]+E\left[(W(3)-W(2))^{2}\right] .\right.
$$

(All cross-product terms on right side drop out because of independent increments, that is, for $i \neq j$,

$$
E[(W(i)-W(i-1))(W(j)-W(j-1))]=E[W(i)-W(i-1)] E[W(j)-W(j-1)]=0 * 0=0
$$

holds.) We conclude that

$$
E\left[(W(1)+W(2)+W(3))^{2}\right]=3^{2}+2^{2}+1=14 .
$$

