EE 3025

Solved Problems on Random Processes/Mean Square Estimation

1 Mean Square Estimation

Problem 1.1: Let the input to a channel be RV X which is exponentially distributed with mean 1. Given X = x, let the conditional distribution of the output Y from the channel be exponential with mean 1/x. The minimum mean square receiver generates an estimate \hat{X} of X of form

$$\hat{X} = \frac{1}{AY + B},$$

for certain constants A, B. Evaluate A and B.

Solution. The joint density of (X, Y) is

$$f_X(x,y) = \begin{cases} xe^{-x(y+1)}, & x \ge 0, y \ge 0\\ 0, & \text{elsewhere} \end{cases}$$

Therefore,

$$E(X|Y=y) = \frac{\int_0^\infty x^2 e^{-x(y+1)} dx}{\int_0^\infty x e^{-x(y+1)} dx} = \frac{2}{y+1}$$

Therefore,

$$A = B = 0.5.$$

Problem 1.2: Let the input to a channel be RV X with PDF

$$f_X(x) = xe^{-x^2/2}u(x).$$

Let the output from the channel be RV Y given by

$$Y = 4X + 2Z,$$

where Z is a RV independent of X whose PDF is

$$f_Z(z) = z e^{-z^2/2} u(z).$$

The minimum mean square straight line receiver generates an estimate \hat{X} of X of form

$$\hat{X} = AY + B,$$

for certain constants A, B. Evaluate A and B.

Solution.

$$\mu_X = \mu_Z = \sqrt{\pi/2} = 1.2533$$

$$\sigma_X^2 = \sigma_Z^2 = 2 - \pi/2 = 0.4292$$

$$\mu_Y = 4\mu_X + 2\mu_Z = 6\sqrt{\pi/2} = 7.5199$$

$$\sigma_Y^2 = 16\sigma_X^2 + 4\sigma_Z^2 = 40 - 10\pi = 8.5841$$

$$Cov(X, Y) = 4\sigma_X^2 = 8 - 2\pi = 1.7168$$

$$\rho_{X,Y} = \frac{Cov(X, Y)}{\sigma_X \sigma_Y} = 0.8944$$

$$A = \rho\sigma_X/\sigma_Y = 0.2000$$

$$B = \mu_X - A\mu_Y = -0.2507$$

Problem 1.3: The input to a channel is a RV X with mean 1 and variance 1. There are two outputs Y_1, Y_2 from the channel:

$$Y_1 = X + Z_1$$

$$Y_2 = X + Z_2$$

where Z_1, Z_2 constitute the "channel noise random variables" and satisfy:

- Z_1 and Z_2 each have mean 1 and variance 1.
- Z_1 and Z_2 are independent of each other.
- Z_1 and Z_2 are each independent of X.
- (a) Find the constants a_1, a_2 so that the estimator

$$\hat{X} = a_1 Y_1 + a_2 Y_2$$

will make the mean square error $E[(X - \hat{X})^2]$ a minimum. Solution. Using the orthogonality principle, you solve the equations

$$\begin{bmatrix} E[Y_1^2] & E[Y_1Y_2] \\ E[Y_1Y_2] & E[Y_2^2] \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} E[XY_1] \\ E[XY_2] \end{bmatrix}$$
$$E(Y_1) = E(X) + E(Z_1) = 2$$
$$Var(Y_1) = Var(X) + Var(Z_1) = 2$$
$$E(Y_1^2) = Var(Y_1) + \mu_{Y_1}^2 = 6$$

Similarly,

$$E(Y_2) = 2, \quad E(Y_2^2) = 6$$

We also have

$$Cov(X, Y_1) = Cov(X, X) + Cov(X, Z_1) = 1 + 0 = 1$$

$$E(XY_1) = Cov(X, Y_1) + \mu_X \mu_{Y_1} = 3$$

Similarly,

$$E(XY_2) = 3$$

Finally, we have

$$Cov(Y_1, Y_2) = Cov(X, X) + Cov(X, Z_1) + Cov(X, Z_2) + Cov(Z_1, Z_2) = 1 + 0 + 0 = 1$$
$$E(Y_1Y_2) = Cov(Y_1, Y_2) + \mu_{Y_1}\mu_{Y_2} = 5$$
You now solve
$$\begin{bmatrix} 6 & 5 \end{bmatrix} \begin{bmatrix} a_1 \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix}$$

$$\left[\begin{array}{cc} 6 & 5 \\ 5 & 6 \end{array}\right] \left[\begin{array}{c} a_1 \\ a_2 \end{array}\right] = \left[\begin{array}{c} 3 \\ 3 \end{array}\right].$$

The solutions are

$$a_1 = a_2 = 3/11$$

(b) Find the constants b_1, b_2, b_3 so that the estimator

$$\hat{X} = b_1 Y_1 + b_2 Y_2 + b_3$$

will make $E[(X - \hat{X})^2]$ a minimum.

Solution. Using the orthogonality principle, you solve the equation

$$\begin{bmatrix} E[Y_1^2] & E[Y_1Y_2] & E[Y_1] \\ E[Y_1Y_2] & E[Y_2^2] & E[Y_2] \\ E[Y_1] & E[Y_2] & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} E[XY_1] \\ E[XY_2] \\ E[X] \end{bmatrix}$$

which becomes (using the parameters computed in (a)):

6	5	2	$\begin{bmatrix} b_1 \end{bmatrix}$		[3]
5	6	2	b_2	=	3
$\lfloor 2$	2	1	$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$		1

The solutions are

$$b_1 = 1/3$$

 $b_2 = 1/3$
 $b_3 = -1/3$

Problem 1.4: A WSS random process X(t) has autocorrelation function $5/(\tau^2 + 9)$. Write some Matlab code to find the coefficient A such that $\hat{X}(3) = AX(1)$ is the optimum first-order MS predictor of X(3) based on X(1).

Solution.

```
tau=0:2;
autocorrelation=5./(tau.^2+9);
RX0=autocorrelation(1);
RX2=autocorrelation(3);
A=RX2/RX0
```

Problem 1.5: A WSS random process X(t) has autocorrelation function $3.5-2\cos(\tau)$. Find the coefficient A such that $\hat{X}(6) = AX(3)$ is the optimum first-order MS predictor of X(6) based on X(3).

Solution. Compute $A = R_X(3)/R_X(0)$.

Problem 1.6: A WSS random process X(t) has autocorrelation function $5/(\tau^2 + 9)$. Write some Matlab code to find the coefficients A, B such that $\hat{X}(4) = AX(1) + BX(2)$ is the optimum second-order MS predictor of X(4) based on X(1), X(2).

Solution.

```
tau=0:3;
autocorrelation=5./(tau.^2+9);
RX0=autocorrelation(1);
RX1=autocorrelation(2);
RX2=autocorrelation(3);
RX3=autocorrelation(4);
M=[RX0 RX1; RX1 RX0];
v=inv(M)*[RX3 RX2]';
A=v(1)
B=v(2)
```

Problem 1.7: A WSS random process X(t) has autocorrelation function $3.5 - 2\cos(\tau)$. Find the coefficients A, B such that $\hat{X}(7) = AX(2) + BX(5)$ is the optimum secondorder MS predictor of X(7) based on X(2), X(5).

Solution. The orthogonality principle gives you the following equations to solve:

$$\begin{bmatrix} R_X(0) & R_X(3) \\ R_X(3) & R_X(0) \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} R_X(5) \\ R_X(2) \end{bmatrix}$$

Problem 1.8: A discrete-time process (X_n) is passed through an additive noise channel with channel noise process (Z_n) . The processes X and Z are uncorrelated zero-mean WSS processes with the following autocorrelation functions:

$$R_X(\tau) = 10/2^{|\tau|}, \quad R_Z(\tau) = 10\delta[\tau]$$

The channel output process is $Y_n = X_n + Z_n$.

(a) Find the constant A so that $E[(X_n - AY_n)^2]$ is a minimum. Solution.

$$A = E[X_n Y_n] / E[Y_n^2] = R_X(0) / (R_X(0) + R_Z(0)) = 0.50$$

(b) Find the constant B so that $E[(X_n - BY_{n-1})^2]$ is a minimum. Solution.

$$B = E[X_n Y_{n-1}] / E[Y_{n-1}^2] = R_X(1) / (R_X(0) + R_Z(0)) = 0.25$$

Problem 1.9: In the block diagram below,

$$X \to \boxed{\text{channel}} \to Y \to \boxed{\text{estimator}} \to \hat{X}$$

the input RV X and the channel satisfy

$$\begin{bmatrix} p_X(0) = 0.25 \\ p_X(1) = 0.40 \\ p_X(2) = 0.35 \end{bmatrix} \begin{bmatrix} P[Y = 0|X = 0] = 0.5 & P[Y = 1|X = 0] = 0.5 & P[Y = 2|X = 0] = 0 \\ P[Y = 0|X = 1] = 0.5 & P[Y = 1|X = 1] = 0 & P[Y = 2|X = 1] = 0.5 \\ P[Y = 0|X = 2] = 0 & P[Y = 1|X = 2] = 0.5 & P[Y = 2|X = 2] = 0.5 \end{bmatrix}$$

The (nonlinear) least-squares estimator $\hat{X} = \hat{X}_{\text{LS}}$ minimizes the mean square estimation error $E[(X - \hat{X})^2]$ and takes the form

$$\hat{X}_{\rm LS} = \begin{cases} \hat{X}_{\rm LS}(0), & Y = 0\\ \hat{X}_{\rm LS}(1), & Y = 1\\ \hat{X}_{\rm LS}(2), & Y = 2 \end{cases}$$

Find $\hat{X}_{LS}(0), \hat{X}_{LS}(1), \hat{X}_{LS}(2).$

Solution. The matrix of joint probabilities is

$$\left[\begin{array}{rrrr} 1/8 & 1/8 & 0\\ 0.20 & 0 & 0.20\\ 0 & 0.175 & 0.175 \end{array}\right]$$

Normalizing columns, the matrix of conditional probabilities for the X values given the Y values is then

$$\left[\begin{array}{rrrr} 5/13 & 5/12 & 0\\ 8/13 & 0 & 8/15\\ 0 & 7/12 & 7/15 \end{array}\right]$$

Using this conditional probability matrix, you get:

$$\begin{aligned} X_{\rm LS}(0) &= E[X|Y=0] = 8/13\\ \hat{X}_{\rm LS}(1) &= E[X|Y=1] = 7/6\\ \hat{X}_{\rm LS}(2) &= E[X|Y=2] = 22/15 \end{aligned}$$

Problem 1.10: In the block diagram below,

$$X[n] \to$$
 channel $\to Y[n] = X[n] + Z[n] \to$ filter $\to \hat{X}[n]$

the signal X[n] is WSS with autocorrelation function $2^{-|\tau|}$ and the channel noise process Z[n] is WSS with $R_Z[\tau] = \delta[\tau]$; signal & channel noise are uncorrelated. You are going to design a two-tap *predictive Wiener filter*, whose output at time *n* is of the form

$$\hat{X}[n+1] = AY[n] + BY[n-1]$$

and minimizes the prediction error $E[(X[n+1] - \hat{X}[n+1])^2]$.

(a) The prediction error $X[n+1] - \hat{X}[n+1]$ must be uncorrelated with each of the observations Y[n] and Y[n-1]. Using this fact, you can write down two linear equations

$$C_{1,1}A + C_{1,2}B = C_{1,3} \tag{1}$$

$$C_{2,1}A + C_{2,2}B = C_{2,3} \tag{2}$$

involving the unknown filter tap weights A and B. Determine the six constants

$$C_{1,1}, C_{1,2}, C_{1,3}, C_{2,1}, C_{2,2}, C_{2,3}$$

Solution. From the equations

$$E[(X[n+1] - AY[n] - BY[n-1])Y[n]] = 0$$

$$E[(X[n+1] - AY[n] - BY[n-1])Y[n-1]] = 0$$

you obtain

$$AR_{Y}[0] + BR_{Y}[1] = R_{X}[1]$$

$$AR_{Y}[1] + BR_{Y}[0] = R_{X}[2]$$

from which one determines that

$$C_{1,1} = 2$$
 $C_{1,2} = 1/2$ $C_{1,3} = 1/2$
 $C_{2,1} = 1/2$ $C_{2,2} = 2$ $C_{2,3} = 1/4$

(b) Solve the equations (1)-(2) simultaneously for A and B. Solution. You get A = 7/30 and B = 1/15.

2 Nonstationary Processes

Problem 2.1: Let r(t) be the ramp function

$$r(t) = \begin{cases} t, & t \ge 0\\ 0, & t < 0 \end{cases}$$

Let random variable U be uniformly distributed in the interval [0, 1]. Let

 $X(t), \quad -\infty < t < \infty$

be the continuous-time random process in which

$$X(t) = r(U+t)r(U-t)$$

(a) Let the continuous-time signal x(t) be the realization of the process X(t) that you get when U = 1/2. Plot x(t). Is $x(t) \ge 0$ for all t? Is x(t) an even function of t? At what time t does x(t) attain its peak value? At what two times t does x(t) attain a value equal to one-half the peak value?

Solution. x(t) can be described mathematically as:

$$x(t) = \begin{cases} 0.25 - t^2, & -0.5 \le t \le 0.5 \\ 0, & \text{elsewhere} \end{cases}$$

The plot is:

The signal is clearly nonnegative and even. The peak value (which is 0.25) is taken on when t = 0. Half the peak value (which is 0.125) is taken on at $t = \pm 1/\sqrt{8} = \pm 0.3536$.

(b) Compute E(X(0)) and compute E(X(1/2)). Can you conclude from these two answers that X(t) is a nonstationary process?
 Solution. For each t,

$$X(t) = \max(0, U^2 - t^2).$$

Thus,

$$X(0) = U^{2}$$

$$X(1/2) = \max(0, U^{2} - 1/4)$$

$$E[X(0)] = E[U^{2}] = (1/12) + (1/2)^{2} = 1/3$$

$$E[X(1/2)] = \int_{0}^{1} \max(0, u^{2} - 1/4) du = \int_{1/2}^{1} (u^{2} - 1/4) du = 1/6$$

The process must be nonstationary (if it were stationary, E[X(t)] would be the same for all t).

Problem 2.2: A message M is modeled as an equiprobable discrete RV taking the values 1, 2, 4. Frequency modulation is used to transmit M over a communication system. The resulting modulated FM wave is

$$M(t) = \cos(2\pi t M), \quad -\infty < t < \infty.$$

(a) M(t) is a continuous-time random signal. It has 3 realizations. What are each of these realizations? Each realization is a periodic signal; give the period of each realization. Plot each of the 3 realizations for $0 \le t \le 1$.

Solution. The 3 realizations are

$$x_1(t) = \cos(2\pi t)$$

$$x_2(t) = \cos(4\pi t)$$

$$x_3(t) = \cos(8\pi t)$$

The plots are:

The periods of $x_1(t), x_2(t), x_3(t)$ are 1, 1/2, 1/4, respectively.

(b) Let X and Y be the RV's

$$X = M(1/4), \quad Y = M(1/8).$$

Compute $\rho_{X,Y}$. Solution.

$$E(XY) = E(\cos(\pi M/2)\cos(\pi M/4))$$

= (1/3) cos(\pi/2) cos(\pi/4) + (1/3) cos(\pi) cos(\pi/2) + (1/3) cos(2\pi) cos(\pi)
= -1/3

$$E(X) = E(\cos(\pi M/2)) = (1/3)(-1) + (1/3)(1) = 0$$

$$E(X^2) = (1/3)(-1)^2 + (1/3)(1)^2 = 2/3$$

$$\sigma_X^2 = 2/3$$

$$\begin{split} E(Y) &= E(\cos(\pi M/4)) = (1/3)(1/\sqrt{2}) + (1/3)(-1) = -0.0976\\ E(Y^2) &= (1/3)(1/\sqrt{2})^2 + (1/3)(-1)^2 = 1/2\\ \sigma_X^2 &= 1/2 - (-0.0976)^2 = 0.4905 \end{split}$$

$$\rho_{X,Y} = \frac{-1/3}{\sqrt{(2/3) * (0.4905)}} = -0.5829.$$

(c) Find a time t satisfying 0 < t < 1 such that the RV's M(t) and M(1/4) are uncorrelated.

Solution. Since E(M(1/4)) = 0, the problem reduces to finding t for which

$$E(\cos(2\pi tM)\cos(\pi M/2)) = 0.$$

This is true if and only if

$$-\cos(4\pi t) + \cos(8\pi t) = 0.$$

t = 1/2 is obviously one solution between t = 0 and t = 1. Plotting the signal $-\cos(4\pi t) + \cos(8\pi t)$, you will see that this is the only solution.

(d) Is the process stationary?

Solution. M(0) is identically equal to 1, i.e., it is not random. But, at other times, M(t) can be random. Since all 1-D cross-sections do not have the same distribution, the process is not stationary.

Problem 2.3: Let A, B be independent RV's each having mean 0 and variance 1. Let X(t) be the continuous-time random process

$$X(t) = At + (2t - 1)B, \quad -\infty < t < \infty$$

(a) Compute the autocorrelation function $R_X(s,t)$. Solution.

$$R_X(s,t) = E[X(s)X(t)] = stE[A^2] + E[AB]\{s(2t-1) + t(2s-1)\} + E[B^2](2s-1)(2t-1).$$

Since E[AB] = 0 (why?), this simplifies to

$$R_X(s,t) = st + (2s - 1)(2t - 1).$$

(b) Find the value of t for which Var[X(t)] is a minimum. Solution. The mean function $\mu_X(t)$ is clearly zero. Therefore,

$$\operatorname{Var}[X(t)] = R_X(t,t) = t^2 + (2t-1)^2.$$

Setting the first derivative equal to zero, one easily determines that t = 2/5.

(c) Find the value of t for which E[X(t)X(t-1)] is a minimum. Solution.

$$E[X(t)X(t-1)] = R_X(t,t-1) = t(t-1) + (2t-1)(2t-3).$$

Setting the derivative equal to zero yields t = 9/10.

(d) Is the process stationary?

Solution. No, because $R_X(s,t)$ is not a function of s-t.

Problem 2.4: Let A be a discrete RV with PMF

$$p_A(a) = \begin{cases} 1/2, & a = 0\\ 1/4, & a = 1\\ 1/4, & a = 2 \end{cases}$$

We consider the continuous-time random process $(X(t) : t \ge 0)$ in which

$$X(t) = \exp(-At), \ t \ge 0.$$

(a) What are the realizations?

Solution. The three realizations are $u(t), \exp(-t)u(t), \exp(-2t)u(t)$.

- (b) Find the PMF of the component RV X(t).
 Solution. For fixed t > 0, the RV X(t) takes the three values 1, exp(-t), and exp(-2t), with probabilities 1/2, 1/4, 1/4, respectively. The RV X(0) has to be treated as a special case. It takes just one value 1, with probability 1.
- (c) Compute E[X(t)].

Solution.

$$E[X(t)] = 1 * (1/2) + \exp(-t) * (1/4) + \exp(-2t) * (1/4)$$

- (d) Does the limit of $\operatorname{Var}[X(t)]$ exist as $t \to \infty$? If so, what is the limit?
 - **Solution.** As $t \to \infty$, the 1st realization stays at 1, and the 2nd and 3rd realizations converge to 0. In other words, we may regard $X(\infty)$ as the RV with the two values 1,0 taken on with probability 1/2 each. The mean of $X(\infty)$ is 1/2, its second moment is also 1/2 (since $X(\infty)^2 = X(\infty)$), and so its variance is $1/2 (1/2)^2 = 1/4$.

We conclude that

$$\lim_{t \to \infty} \operatorname{Var}[X(t)] = \operatorname{Var}[X(\infty)] = 1/4$$

The long way to show this is first to show that

$$Var[X(t)] = E[X(t)^{2}] - (0.5 + 0.25 * \exp(-t) + 0.25 * \exp(-2t))^{2}$$

= (0.5 + 0.25 * exp(-2t) + 0.25 * exp(-4t))
- (0.5 + 0.25 * exp(-t) + 0.25 * exp(-2t))^{2}

Taking the limit as $t \to \infty$, the exponentials drop out and you again get the answer 1/4.

3 WSS Processes

Problem 3.1: What approximate result will the following Matlab script give:

```
n=1:100000;
freq=pi/8;
theta=2*pi*rand(1,100000);
mean(cos(freq*n+theta).*cos(freq*(n+2)+theta))
```

Solution. Let X be the ergodic WSS discrete-time process for which

$$X_n = \cos(\Theta + n\pi/8),$$

where Θ is uniformly distributed between 0 and 2π . The Matlab script is using "timeaveraging" to approximate $R_X(2)$. From "random sinusoid" theory, we know that

$$R_X(\tau) = (1/2)\cos(\omega_0 \tau)$$

Therefore,

$$R_X(2) = (1/2)\cos(\pi/4) = 1/(2\sqrt{2}).$$

Problem 3.2: An ergodic WSS process X(t) has autocorrelation function $5 + 4 * 2^{-|\tau|}$.

(a) Compute μ_X (assuming $\mu_X > 0$). Solution. $\mu_X^2 = \lim_{\tau \to \infty} R_X(\tau) = 5$. Therefore, $\mu_X = \sqrt{5}$.

- (b) Compute the power P_X generated by the process. Solution. $P_X = R_X(0) = 9$.
- (c) Compute $\operatorname{Var}[X(t)]$. Solution. $\operatorname{Var}[X(t)] = P_X - \mu_X^2 = 4$.
- (d) Compute Var[X(1) + X(2) + X(3)]. Solution. From the two equations

$$Cov[X(i), X(j)] = 4 * 2^{-|i-j|}$$

and

$$Var[X(1) + X(2) + X(3)] = \sum_{i=1}^{3} Var[X(i)] + 2Cov[X(1), X(2)] + 2Cov[X(2), X(3)] + 2Cov[X(1), X(3)]$$

we obtain:

$$Var[X(1) + X(2) + X(3)] = 3 * 4 + 2 * 2 + 2 * 2 + 2 * 1 = 22$$

(e) Compute the constant A so that $\hat{X}(2) = AX(1)$ will be the minimum mean square predictor of X(2) based on X(1).

Solution. We know from class that $A = R_X(1)/R_X(0)$. Therefore, A = 7/9.

Problem 3.3: A discrete-time ergodic WSS process X has a realization of period 3 which takes the consecutive left-to-right values of 1, 2, 3 over one period. Compute μ_X , P_X , σ_X^2 , $R_X(7)$ $R_X(11)$.

Solution. Since the realization is periodic with period 3, $R_X(\tau)$ will also be periodic with period 3. Using this fact and the ergodic property, we can compute all of the desired parameters via time averaging:

$$\mu_X = (1+2+3)/3 = 2.$$

$$P_X = R_X(0) = (1^2 + 2^2 + 3^2)/3 = 14/3.$$

$$\sigma_X^2 = P_X - \mu_X^2 = 2/3.$$

$$R_X(7) = R_X(7-2*3) = R_X(1) = (1/3)[1,2,3] \bullet [2,3,1] = 11/3.$$

$$R_X(11) = R_X(11-3*3) = R_X(2) = (1/3)[1,2,3] \bullet [3,1,2] = 11/3.$$

Problem 3.4: A box contains two coins, one fair and the other biased with probability of heads equal to 2/3. A coin is selected from the box at random and flipped forever. Let X be the discrete-time WSS process defined by:

$$X[n] = \begin{cases} 1, & \text{if } n-\text{th flip is heads} \\ 0, & \text{if } n-\text{th flip is tails} \end{cases}$$

Work out $R_X(\tau), P_X, \mu_X, \sigma_X^2$. Is the process ergodic?

Solution.

$$P_X = R_X(0) = (1/2)E[X[n]^2|\text{fair}] + (1/2)E[X[n]^2|\text{biased}]$$

$$= (1/2)(1/2) + (1/2)(2/3) = 7/12$$

$$R_X(\tau) \ (\tau \neq 0) = (1/2)E[X[n]X[n+\tau]|\text{fair}] + (1/2)E[X[n]X[n+\tau]|\text{biased}]$$

$$= (1/2)(1/2)(1/2) + (1/2)(2/3)(2/3) = 25/72$$

$$\mu_X = (1/2)E[X[n]|\text{fair}] + (1/2)E[X[n]|\text{biased}]$$

$$= (1/2)(1/2) + (1/2)(2/3) = 7/12$$

$$\sigma_X^2 = P_X - \mu_X^2 = 7/12 - 49/144 = 35/144$$

Intuitively, the process is not ergodic because half the time you get a realization according to the fair coin, and the other half of the time you get a realization according to the unfair coin. Time averages computed for these two types of realizations would give different answers.

Problem 3.5: The power spectral density $S_X(\omega)$ of an ergodic WSS process X(t) is plotted above.

(a) Compute P_X . Solution.

$$P_X = \frac{1}{2\pi} \int_{-4}^{4} (16 - \omega^2) d\omega + \frac{30}{2\pi} = \frac{173}{3\pi}$$

(b) Determine the percentage of the total power that is due to the frequency band $-3 \le \omega \le 3$.

Solution.

$$\frac{1}{2\pi} \int_{-3}^{3} (16 - \omega^2) d\omega + \frac{30}{2\pi} = \frac{54}{\pi}$$
Percentage = $\left[\frac{54}{173/3}\right] \times 100 = 93.64\%$

(c) Determine μ_X^2 and σ_X^2 .

Solution. Only the inverse transform of the delta function part contributes anything as $\tau \to \infty$. So, μ_X^2 is the inverse transform of $30\delta(\omega)$, which is $15/\pi$.

$$\mu_X^2 = \frac{15}{\pi}$$

$$\sigma_X^2 = P_X - \frac{15}{\pi} = \frac{128}{3\pi}$$

Problem 3.6: A WSS process X(t) has autocorrelation function $R_X(\tau) = 3 + 2 \exp(-|\tau|)$.

- (a) What is the average power generated by the process X(t)? Solution. $P_X = R_X(0) = 5$
- (b) Find $S_X(\omega)$. Solution. Take Fourier transform of $R_X(\tau)$. You get

$$S_X(\omega) = 6\pi\delta(\omega) + \frac{4}{1+\omega^2}$$

(c) What percentage of the X(t) power is due to frequencies in the band $-1 \le \omega \le 1$? Solution.

$$(1/2\pi) \int_{-1}^{1} S_X(\omega) d\omega = 3 + 8 \operatorname{Tan}^{-1}(1)/2\pi = 4$$

Percentage of total power = 80%

Problem 3.7: Let X(t) and Y(t) be independent WSS processes with $R_X(\tau) = \cos(6\pi\tau)$ and $R_Y(\tau) = \cos(2\pi\tau)$. Compute the power spectral density of the process Z(t) = X(t)Y(t). Compute the power generated by the process Z(t) in two different ways. Solution.

$$R_Z(\tau) = R_X(\tau)R_Y(\tau) = (1/2)[\cos(8\pi\tau) + \cos(4\pi\tau)]$$

$$S_Z(f) = (1/4)[\delta(f-4) + \delta(f+4) + \delta(f-2) + \delta(f+2)]$$

power = $R_Z(0) = 1$
power = $\int_{-\infty}^{\infty} S_Z(f)df = (1/4)[1+1+1+1] = 1$

4 Linear Filtering of Processes

Problem 4.1: Let (X_n) be white noise with $R_X(\tau) = \delta[\tau]$ (the discrete-time delta function). Let (Y_n) be the WSS process arising from the causal filtering operation:

$$Y_n = 8X_n + (0.6)Y_{n-1}, \text{ for all integers } n \tag{3}$$

(a) Multiply both sides of (3) by X_n and take the expected value of both sides. Using the fact that E[Y_iX_n] = 0 for all i < n, deduce what the value of E[X_nY_n] is.
Solution.

$$E[Y_n X_n] = 8E[X_n^2] = 8$$

(b) Multiply both sides of (3) by Y_n and then by Y_{n-1}; take the expected value, and then solve the two resulting equations simultaneously for R_Y(0) and R_Y(1).
 Solution. Multiplying as directed:

$$E[Y_n^2] = 8E[X_nY_n] + (0.6)E[Y_{n-1}Y_n]$$
$$E[Y_nY_{n-1}] = (0.6)E[Y_{n-1}^2]$$

These equations simplify to:

$$R_Y(0) = 64 + (0.6)R_Y(1)$$

 $R_Y(1) = (0.6)R_Y(0)$

The solution is:

$$R_Y(0) = 100, \quad R_Y(1) = 60$$

(c) Multiply both sides of (3) by Y_{n-2} , take the expected value, and then compute $R_Y(2)$ from $R_Y(1)$.

Solution.

$$E[Y_n Y_{n-2}] = (0.6)E[Y_{n-1}Y_{n-2}]$$
$$R_Y(2) = (0.6)R_Y(1) = 36$$

- **Problem 4.2:** The power spectral density $S_X(\omega)$ of a continuous-time WSS process X(t) is plotted above.
 - (a) Compute the power P_X generated by the process X(t).
 Solution. Divide the area of the triangle by 2π.

$$P_X = (1/2) * 40 * 10 * (1/2\pi) = 100/\pi$$

(b) Let Y(t) be the process obtained by linear filtering of X(t) with filter frequency response function:

$$H(\omega) = \begin{cases} 1, & -10 \le \omega \le 10\\ 0, & \text{elsewhere} \end{cases}$$

Compute the power P_Y generated by the process Y(t).

Solution. You just have to remove two little triangles of base 10 and height 5 from the X process power spectrum.

$$P_Y = (200 - 2 * 0.5 * 10 * 5)/2\pi = 75/\pi$$

(c) Let Y(t) be obtained from filtering of X(t) as before, except that now the filter has frequency response

$$H(\omega) = \begin{cases} 1, & -B \le \omega \le B\\ 0, & \text{elsewhere,} \end{cases}$$

where the filter bandwidth B must be between 0 and 20. Compute the bandwidth B so that $P_Y/P_X = 0.90$.

Solution. You just have to remove two little triangles of base 20 - B and height 0.5(20 - B) from the X process power spectrum.

$$P_Y = (200 - 2 * 0.5 * 0.5 * (20 - B)(20 - B))/2\pi$$

Setting $P_Y = 0.9 * P_X$, you get

$$200 - (20 - B)^2 / 2 = 180$$

from which you determine that

$$B = 20 - \sqrt{40} = 13.68$$

Problem 4.3: A WSS process X(t) has power spectral density function

$$S_X(\omega) = \begin{cases} 4 - (\omega^2/9), & |\omega| \le 6\\ 0, & \text{elsewhere} \end{cases}$$

(a) Find the average power generated by this process.Solution.

$$P_X = \frac{1}{2\pi} \int_{-6}^{6} [4 - \omega^2/9] d\omega = 16/\pi$$

(b) Find $R_X(\tau)$. Solution.

$$R_X(\tau) = \frac{1}{2\pi} \int_{-6}^{6} [4 - \omega^2/9] e^{j\omega\tau} d\omega$$

$$= \frac{1}{\pi} \int_{0}^{6} [4 - \omega^2/9] \cos(\tau\omega) d\omega$$

$$= \frac{4\sin(6\tau)}{\pi\tau} + (d^2/d\tau^2) \left[\frac{\sin(6\tau)}{9\pi\tau}\right]$$

(c) X(t) is applied as input to the RC filter given in the diagram below (take RC = 1/6). Find the average power generated by the filter output process Y(t). Solution.

$$S_Y(\omega) = |H(\omega)|^2 S_X(\omega) = \left\lfloor \frac{1}{1 + \omega^2/36} \right\rfloor S_X(\omega)$$

$$P_Y = \frac{1}{2\pi} \int_{-6}^{6} \frac{4 - \omega^2/9}{1 + \omega^2/36} d\omega$$
$$= \frac{4}{\pi} \int_{0}^{6} \left[\frac{72}{36 + \omega^2} - 1 \right] d\omega$$
$$= 12 \left(1 - \frac{2}{\pi} \right)$$

Problem 4.4: Refer to the RC filter diagram above. Suppose that RC = 2.

(a) Assuming $\mu_X = 2$. Compute μ_Y . Solution.

$$H(s) = \frac{1/2}{s+1/2}$$

$$h(t) = 0.5 \exp(-t/2)u(t)$$
$$\mu_Y = \mu_X \int_{-\infty}^{\infty} h(t)dt = 5 * 1 = 5$$

(b) Assuming $R_X(\tau) = 6\delta(\tau)$, compute P_Y . Solution. Since the input is white,

$$P_Y = P_X \int_{-\infty}^{\infty} h(t)^2 dt = 6 \int_0^{\infty} 0.25 \exp(-t) dt = 1.5.$$

Problem 4.5: A WSS process X(t) has autocorrelation function $R_X(\tau) = A + B\delta(\tau)$, where A and B are constants. Let Y(t) be the process defined by

$$Y(t) = \int_{t-3}^{t} X(\alpha) d\alpha$$

for all t.

(a) Find $R_Y(\tau)$.

Solution.

$$\begin{array}{rcl} h(\tau) &=& u(\tau)-u(\tau-3) \\ h(\tau)*h(-\tau) &=& \phi(\tau) \end{array}$$

where

$$\phi(\tau) = \begin{cases} 3 \left[1 - \frac{|\tau|}{3} \right], & -3 \le \tau \le 3\\ 0, & \text{elsewhere} \end{cases}$$

$$R_Y(\tau) = \phi(\tau) * R_X(\tau)$$

= $A \int \phi(\tau) d\tau + B \phi(\tau)$
= $9A + B \phi(\tau)$

(b) Find $S_Y(\omega)$. Solution.

$$S_Y(\omega) = \mathcal{F}[R_Y(\tau)] = 18\pi A\delta(\omega) + B\left[\frac{2\sin(3\omega/2)}{\omega}\right]^2$$

(c) Find the average power generated by the process Y(t). Solution.

$$P_Y = R_Y(0) = 9A + B\phi(0) = 9A + 3B$$

(d) Find the mean μ_Y of the process Y(t). Solution.

$$\mu_Y = \mu_X \left[\int h(t) dt \right] = \pm 3\sqrt{A}$$

Problem 4.6: The input X(t) to the filter above is WSS with autocorrelation function

$$R_X(\tau) = 6\delta(\tau) + 10, \quad -\infty < \tau < \infty$$

(a) Find μ_X and μ_Y . Solution.

$$h(t) = (R/L)e^{-tR/L}u(t)$$

$$\mu_X = \pm\sqrt{10}$$

$$\mu_Y = \mu_X \int_{-\infty}^{\infty} h(t)dt = \pm\sqrt{10}$$

(b) Find output power.

Solution.

$$P_Y = \frac{1}{2\pi} \int_{-\infty}^{\infty} |H(\omega)|^2 S_X(\omega) d\omega$$

= $\frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\frac{R^2}{L^2 \omega^2 + R^2}\right) (6 + 20\pi\delta(\omega)) d\omega$
= $3R/L + 10$

Problem 4.7: In the block diagram below

X(t) is white noise with $R_X(\tau) = A\delta(\tau)$.

(a) Find $S_W(\omega)$.

Solution. Let $H(\omega)$ be the frequency response of the circuit part of the overall system.

$$S_{Y}(\omega) = \frac{A}{\omega^{2}}$$

$$H(\omega) = \frac{Lj\omega}{Lj\omega + R}$$

$$|H(\omega)|^{2} = \frac{L^{2}\omega^{2}}{L^{2}\omega^{2} + R^{2}}$$

$$S_{W}(\omega) = |H(\omega)|^{2}S_{Y}(\omega) = \frac{AL^{2}}{L^{2}\omega^{2} + R^{2}}$$

(b) Find $R_W(\tau)$.

Solution. Take the inverse Fourier transform of $S_W(\omega)$:

$$R_W(\tau) = \frac{AL}{2R} \exp(-R|\tau|/L)$$

(c) Compute P_W two different ways. Solution.

$$P_W = R_W(0) = \frac{AL}{2R}$$

$$P_W = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_W(\omega) d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{A}{\omega^2 + (R/L)^2} d\omega = AL/2R$$

Problem 4.8: A band-limited continuous-time WSS process x(t) has power spectral density

$$S_x(f) = \begin{cases} |f|, & -B \le f \le B\\ 0, & \text{elsewhere} \end{cases}$$

Compute the bandwidth B so that if x(t) is passed through a differentiator, the power at the differentiator output will be equal to the power at the differentiator input. Solution.

input power =
$$2 \int_{0}^{B} S_{x}(f) df = 2 \int_{0}^{B} f df$$

output power = $2 \int_{0}^{B} (2\pi f)^{2} S_{x}(f) df = 8\pi^{2} \int_{0}^{B} f^{3} df$

Solving for B you get

$$B = \frac{1}{\sqrt{2}\pi}$$

Problem 4.9: A zero mean WSS process x[n] has autocorrelation function

$$R_x(\tau) = \begin{cases} 1, & \tau = 0\\ 1/2, & \tau = \pm 1\\ 0, & \text{elsewhere} \end{cases}$$

Let y[n] be the process

$$y[n] = \alpha[x[n] + x[n-1]]$$

where α is a parameter that will be determined.

(a) Find the impulse response of the system that carries x[n] into y[n] and use this to find the autocorrelation function of y[n].

Solution. $h[n] = \alpha$, n = 0, 1 (zero elsewhere) and so

$$R_y[\tau] = h[\tau] * h[-\tau] * R_x(\tau)$$

The right side of the above equation in z domain is

$$\alpha^{2}(1+z^{-1})(1+z)(1+.5z^{-1}+.5z) = \alpha^{2}(.5z^{-2}+2z^{-1}+3+2z+.5z^{2})$$

Therefore

$$R_y(\tau) = \begin{cases} 3\alpha^2, & \tau = 0\\ 2\alpha^2, & \tau = \pm 1\\ (.5)\alpha^2, & \tau = \pm 2\\ 0, & \text{elsewhere} \end{cases}$$

(b) Find the value of α that minimizes $E[\{x[n] - y[n-1]\}^2]$.

Solution. It is desired to compute the power generated by the process z[n] = x[n] - y[n-1]. You get the process z[n] by putting x[n] thru a filter with transfer function $1 - \alpha z^{-1} - \alpha z^{-2}$. So, the z-transform of $R_z(\tau)$ is

$$(1 - \alpha z^{-1} - \alpha z^{-2})(1 - \alpha z - \alpha z^{2})(1 + .5z^{-1} + .5z) = (3\alpha^{2} - \alpha + 1) + \text{other terms}$$

We conclude

$$E[(x[n] - y[n - 1])^2] = R_z(0) = 3\alpha^2 - \alpha + 1$$

This is minimized when $\alpha = 1/6$.

(c) Compute the average power generated by the process y[n], using the value of α you found in (b).
Compute the average power generated by the process y[n], using the value of α you found in (b).

Solution. (c) $3\alpha^2 = 1/12$.

Problem 4.10: Let x(t) be a zero-mean WSS process with

$$S_x(f) = \exp(-\pi|f|)$$

Compute

$$E\left[\left\{\int_{t-1}^t x(u)du\right\}^2\right]$$

Solution. You must find $R_y(0)$ where y(t) is the process

$$y(t) = h(t) * x(t)$$

and where

$$h(t) = \begin{cases} 1, & 0 < t < 1\\ 0, & \text{elsewhere} \end{cases}$$

Letting Q(t) = h(t) * h(-t), we have

$$R_y(0) = \int_{-\infty}^{\infty} Q(\tau) R_x(\tau) d\tau$$

= $2 \int_0^1 (1 - |\tau|) \frac{2}{\pi (1 + 4\tau^2)} d\tau = \frac{4}{\pi} \left[\frac{\operatorname{Tan}^{-1} 2}{2} - \frac{\ln 5}{8} \right]$

Problem 4.11: Let X(t), $-\infty < t < \infty$, be a white noise process and let Y(t) be the process

$$Y(t) = X(t+1) + X(t-1)$$

(a) Find $S_Y(f)$. Solution. $H(f) = 2\cos(2\pi f)$ and so

$$S_Y(f) = |H(f)|^2 S_X(f) = 4\sigma^2 \cos^2(2\pi f)$$

(b) Pass Y(t) through an ideal low-pass filter of bandwidth 1 Hz. Compute the output power.

Solution. output power = $\int_{-1}^{1} 4\sigma^2 \cos^2(2\pi f) df = 4\sigma^2$

- (c) Pass Y(t) through an ideal band-pass filter whose passband is $\{f : |f-4| \le 1/3\}$. Compute the output power. Solution. output power = $2 \int_{4-1/3}^{4+1/3} 4\sigma^2 \cos^2(2\pi f) df = 8\sigma^2/3$
- **Problem 4.12:** A white noise process with autocorrelation function equal to the delta function is the input to a linear time-invariant system. Compute the power generated by the output process if:
 - (a) The system is discrete-time with impulse response $h[n] = 3^{-n}u[n]$. Solution. $R_y(0) = \sum_n h[n]^2 = \sum_{n=0}^{\infty} 9^{-n} = 9/8$.
 - (b) The system is continuous-time with impulse reponse $h(t) = \exp(-3t)u(t)$. Solution. $R_y(0) = \int h(t)^2 dt = \int_0^\infty \exp(-6t) dt = 1/6$.

Problem 4.13: An ergodic WSS process X(t) satisfies

$$R_X(\tau) = 1 + \cos \tau.$$

Let Z(t) be the process

$$Z(t) = \int_{t-1}^t (\sin u) X(u) du.$$

Assuming that $\mu_X < 0$, find the mean function $\mu_Z(t)$. Solution. Time-averaging $R_X(\tau)$, we see that $\mu_X^2 = 1$. Since $\mu_X < 0$, $\mu_X = -1$.

$$\mu_Z(t) = E[Z(t)] = \int_{t-1}^t (\sin u)(\mu_X) du = \cos t - \cos(t-1).$$

Problem 4.14: A WSS process X(t) has power spectral density plotted above. Let Y(t) be the WSS process

$$Y(t) = \int_{-\infty}^{t} X(u) du, \quad -\infty < t < \infty$$

(a) Compute the power generated by the process X(t).
 Solution. The total area of the rectangles is 80. Dividing by 2π,

$$P_X = \frac{40}{\pi}.$$

(b) Compute the power generated by the process Y(t). Solution.

$$P_Y = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_Y(\omega) d\omega = \frac{1}{\pi} \int_{20}^{30} 4|H(\omega)|^2 d\omega = \frac{1}{\pi} \int_{20}^{30} \frac{4}{\omega^2} d\omega = \frac{1}{15\pi}.$$

Problem 4.15: Let X(t) be WSS with $R_X(\tau) = \exp(-2|\tau|)$. Let Y(t) be the result of passing X(t) through an LTI filter with impulse response $h(t) = \exp(-t)u(t)$. Compute $E[(X(t) - Y(t))^2]$.

Solution. Let E(t) be the process E(t) = X(t) - Y(t). Then $E(t) = (\delta(t) - h(t)) * X(t)$, and so

$$S_E(\omega) = |1 - H(\omega)|^2 S_X(\omega)$$

Plugging in

$$H(\omega) = \frac{1}{j\omega + 1}$$
$$S_X(\omega) = \frac{4}{\omega^2 + 4}$$

you get

$$S_E(\omega) = \frac{4\omega^2}{(\omega^2 + 1)(\omega^2 + 4)} = \frac{-4/3}{\omega^2 + 1} + \frac{16/3}{\omega^2 + 4}$$
$$P_E = (1/2\pi)(-4/3)\left[\int_{-\infty}^{\infty} \frac{1}{\omega^2 + 1}d\omega - 4\int_{-\infty}^{\infty} \frac{1}{\omega^2 + 4}d\omega\right] = 2/3$$

Problem 4.16: A WSS process (X_n) has power spectral density function

$$S_X(\omega) = \frac{1}{5 - 4\cos\omega}$$

Let (Y_n) be the WSS process in which

$$Y_n = X_n + X_{n-1}$$

for every n. Find $S_Y(\omega)$ and P_Y .

Solution. The transfer function is $H(z) = 1 + z^{-1}$ and so the frequency response function is $H(\omega) = 1 + \exp(-j\omega)$. This gives

$$|H(\omega)|^2 = 2(1 + \cos \omega)$$

$$S_Y(\omega) = S_X(\omega)|H(\omega)|^2$$

$$= \frac{2(1 + \cos \omega)}{5 - 4\cos \omega}$$

$$= (-1/2) + \frac{9/2}{5 - 4\cos \omega}$$

$$P_Y = (1/2\pi) \int_{-\pi}^{\pi} S_Y(\omega) d\omega = -1/2 + (9/2)R_X(0)$$

Using tables,

$$R_X(\tau) = \mathcal{F}^{-1}\left[\frac{1}{5 - 4\cos\omega}\right] = (1/3)(0.5)^{-|\tau|}$$

 $\operatorname{So},$

$$P_Y = -1/2 + (9/2)(1/3) = 1$$

Problem 4.17: In an additive noise channel, the signal is

$$X(t) = 3\sin 2t$$

and the noise Z(t) has power spectrum

$$S_Z(\omega) = \begin{cases} 10, & -1 \le w \le 1\\ 0, & \text{elsewhere} \end{cases}$$

Send the process X(t) + Z(t) process through a differentiator.

(a) Compute the SNR in decibels at the differentiator input.
 Solution. The power generated by a deterministic sinusoid is 1/2 the square of the amplitude. Therefore,

$$P_X = 3^2/2 = 4.5.$$

We get the noise power by integrating the noise power spectrum and dividing by 2π . Therefore,

$$P_Y = 10 * 2/2\pi = 10/\pi.$$

The differentiator input SNR is therefore

$$10 \log_1 0 \frac{4.5}{10/\pi} = 1.5$$
 decibels

(b) Compute the SNR in decibels at the differentiator output.

Solution. At the differentiator output, the signal part is $6 \cos 2t$ and its power is 36/2 = 18. At the differentiator output, the noise part has power

$$(1/2\pi) \int_{-\infty}^{\infty} \omega^2 S_Z(\omega) d\omega = (1/2\pi) \int_{-1}^{1} 10\omega^2 d\omega = 10/3\pi$$

The SNR is therefore

$$10 \log_{10} \frac{18}{10/3\pi} = 12.3$$
 decibels

Problem 4.18: A discrete-time WSS process X has power spectral density

$$S_X(\omega) = 4\pi\delta(\omega - \pi/3) + 3\pi\delta(\omega - 3\pi/4), \quad 0 \le \omega \le \pi$$

Let Y be the discrete-time WSS process obtained by passing X through the discretetime LTI filter with frequency response function

$$H(\omega) = \frac{5}{2 + \exp(-j\omega)}$$

- (a) Compute the power P_X generated by process X.
 Solution. Integrating S_X(ω) from 0 to π and dividing by 2π gives half the power (because the integral from -π to 0 gives the other half). So P_Y = 7.
- (b) Compute the power P_Y generated by process Y.
 Solution.

$$|H(\omega)|^2 = \frac{25}{5+4\cos\omega}$$
$$|H(\pi/3)|^2 = 25/7$$
$$|H(3\pi/4)|^2 = 25/(5-2\sqrt{2}) = 11.51$$
$$P_Y = (1/\pi)(4\pi)(25/7) + (1/\pi)(3\pi)(11.51) = 48.8$$

Problem 4.19: A continuous-time ergodic WSS process X(t) has aucorrelation function

$$R_X(\tau) = \frac{72\tau^2 + 36}{12\tau^2 + 1}.$$

It is processed as follows:

$$X(t) \to \boxed{\int_{t-8}^{t}} \to Y(t)$$

- (a) Find power P_X generated by process X. Solution. $P_X = R_X(0) = 36$.
- (b) Find μ_X^2 . Solution.

$$\mu_X^2 = \lim_{\tau \to \infty} R_X(\tau) = 72/12 = 6$$

(c) Find μ_Y^2 .

Solution. The impulse response function h(t) is a rectangular pulse of amplitude 1 starting at time t = 0 and ending at time t = 8.

$$\mu_Y = \mu_X \int_{-\infty}^{\infty} h(t)dt = 8\mu_X$$

Squaring both sides, we see that $\mu_Y^2 = 384$.

Problem 4.20: In the block diagram

$$X(t) + Z(t) \rightarrow H(\omega) \rightarrow X_0(t) + Z_0(t)$$

the PSD's of WSS signal X(t) and WSS noise Z(t) are given by

$$S_X(\omega) = \begin{cases} 10 - |\omega|, & -10 \le \omega \le 10 \\ 0, & \text{elsewhere} \end{cases} \qquad S_Z(\omega) = \begin{cases} 5, & -10 \le \omega \le 10 \\ 0, & \text{elsewhere} \end{cases}$$

The filter is an ideal low-pass filter with frequency response $H(\omega)$ equal to 1 from -B to B (zero elsewhere), where B, the filter bandwidth, is to be determined by you in the following.

(a) Compute the signal-to-noise ratio at the filter input (i.e., the X(t) power divided by the Z(t) power). (Hint: If you use the plots of $S_X(\omega)$ and $S_Z(\omega)$, you may be able to compute power without doing any integration.) Solution.

signal-to-noise ratio =
$$\frac{\text{area under } S_X(\omega)}{\text{area under } S_Z(\omega)} = \frac{100}{100} = 1$$

(b) $X_0(t)$ is the signal part of the filter output (i.e., the filter's response to X(t)) and $Z_0(t)$ is the noise part of the filter output. Compute the filter bandwidth Bso that the filter output signal-to-noise ratio will be 1.75 times the filter input signal-to-noise ratio.

Solution. The output signal-to-noise ratio is

$$\frac{\int_{-B}^{B} (10 - |\omega|) d\omega}{\int_{-B}^{B} 5 d\omega} = \frac{100 - (10 - B)^2}{10B} = 1.75$$

Solving this equation for B, you get B = 2.5. (I did not do any of the integrals above; I just used the formula for the area of a triangle.)

Problem 4.21: Two independent discrete-time ergodic WSS processes X_n and Y_n have autocorrelation functions

$$R_X(\tau) = 40\delta[\tau] + 25$$

$$R_Y(\tau) = 70\delta[\tau] + 16$$

and it is known that μ_X and μ_Y are both positive. Let Z_n be the WSS process

$$Z_n = 3X_n - 2Y_n, \quad n = 0, \pm 1, \pm 2, \pm 3, \dots$$

(a) Find μ_X, μ_Y, μ_Z .

Solution. We have

$$\mu_X^2 = 25, \quad \mu_Y^2 = 16,$$

and so

$$\mu_X = 5, \quad \mu_Y = 4.$$

Therefore,

$$\mu_Z = 3\mu_X - 2\mu_Y = 7.$$

(b) Find the power generated by the process Z_n . Solution.

$$E[Z_n^2] = 9E[X_n^2] + 4E[Y_n^2] - 12E[X_nY_n]$$

= 9P_X + 4P_Y - 12µ_Xµ_Y
= 9(40 + 25) + 4(70 + 16) - 12 * 5 * 4 = 689

Problem 4.22: Let X be a discrete-time WSS process with autocorrelation function

$$R_X(\tau) = \exp(-|\tau|).$$

X is to be filtered to yield a discrete-time WSS filter output process Y for which $R_Y(1) = 0$. The filter impulse response function is to be of the form

$$h[n] = \delta[n] + a\delta[n-1].$$

Determine the value of the filter tap weight a.

Solution. Since

$$R_Y(\tau) = R_X(\tau) * (h[\tau] * h[-\tau]),$$

and since

$$h[\tau] * h[-\tau] = (1+a^2)\delta[\tau] + a\delta[\tau+1] + a\delta[\tau-1],$$

it follows that

$$R_Y(\tau) = (1+a^2)R_X(\tau) + aR_X(\tau+1) + aR_X(\tau-1).$$

Plugging in $\tau = 1$, we get

$$0 = R_Y(1) = (1 + a^2) \exp(-1) + a(1 + \exp(-2)).$$

Solving for a, you get

$$a = -\exp(-1).$$

Problem 4.23: Let a WSS process X(t) have PSD

$$S_X(\omega) = \frac{90\omega^2}{10 + \omega^4}$$

(a) Write Matlab code which will compute the power P_X generated by the X process. Solution.

```
syms omega
power=int((1/(2*pi))*90*omega<sup>2</sup>/(10+omega<sup>4</sup>),-inf,inf);
PX=eval(power)
```

(b) Suppose we pass the process X(t) through an ideal lowpass filter with bandwidth 50 rad/sec, and let Y(t) be the output process. Write Matlab code which computes the power P_Y generated by the Y process. Solution.

```
syms omega
power=int((1/(2*pi))*90*omega<sup>2</sup>/(10+omega<sup>4</sup>),-50,50);
PY=eval(power)
```

(c) Use Matlab to find the bandwidth B in rad/sec of an ideal lowpass filter which passes 90% of X's power through it. Round your answer for B to nearest integer.
 Solution. Run the following line of Matlab code

```
eval(int((1/(2*pi))*90*omega<sup>2</sup>/(10+omega<sup>4</sup>),-B,B))/PX
```

for each of the following B values:

B = 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20.

You will find one of these that does the job.

Problem 4.24: Let (Z_n) be white noise with variance 9. Let (X_n) be the WSS process

$$X_n = 5Z_n - 4Z_{n-1} + 2Z_{n-2}$$

Use Matlab to obtain $R_X(\tau)$ for $\tau = -2, -1, 0, 1, 2$.

Solution. Run

This is an implementation of the formula

$$R_X(\tau) = R_Z(\tau) * h(\tau) * h(-\tau) = 9[h(\tau) * h(-\tau)].$$

Problem 4.25: Let Z be discrete-time white noise with unit variance. Find an FIR filter which converts Z into process X with autocorrelation function

$$R_X(\tau) = \begin{cases} 5/4, & \tau = 0\\ -1/2, & \tau = \pm 1\\ 0, & \text{elsewhere} \end{cases}$$

Solution. From experience we know that the filter transfer function is of the form

$$H(z) = a + bz^{-1}.$$

Computing $H(z)H(z^{-1})$ will give us $S_X(\omega)$ (after converting from the z variable to the ω variable).

$$H(z)H(z^{-1}) = (a^2 + b^2) + ab(z + z^{-1}).$$

This must coincide with the z-transform of $R_X(\tau)$, which by inspection is

$$5/4 - 1/2(z + z^{-1}).$$

Therefore, we must solve the equations

$$a^2 + b^2 = 5/4$$
$$ab = -1/2$$

Simple algebra gives us two solutions:

$$a = 1, \quad b = -1/2,$$

or

$$a = -1, \quad b = 1/2,$$

Taking the first solution, we can take our FIR filter to have impulse response function

$$h[n] = a\delta[n] + b\delta[n-1] = \delta[n] - 0.5\delta[n-1].$$

5 Gaussian Processes

Problem 5.1: A WSS Gaussian process X(t) has $\mu_X > 0$ and

$$R_X(\tau) = 4 + 5(2^{-|\tau|})$$

(a) Let f(x) be the density of X(1). Write down f(x).Solution.

$$E[X(1)]^{2} = \lim_{\tau \to \infty} R_{X}(\tau) = 4$$

$$E[X(1)] = 2$$

$$E[X(1)^{2}] = R_{X}(0) = 9$$

$$Var[X(1)] = E[X(1)^{2}] - E[X(1)]^{2} = 9 - 4 = 5$$

$$f(x) = \frac{1}{\sqrt{10\pi}} \exp(-(x-2)^{2}/10)$$

(b) Let g(y) be the density of Y = X(3) + X(2). Write down g(y). Solution.

$$E[Y] = 2\mu_X = 4$$

$$E[Y^2] = E[X(2)^2] + E[X(3)^2] + 2E[X(2)X(3)]$$

$$= 2R_X(0) + 2R_X(1) = 18 + 2(4 + 5/2) = 31$$

$$\sigma_Y^2 = E[Y^2] - \mu_Y^2 = 31 - 16 = 15$$

$$g(y) = \frac{1}{\sqrt{30\pi}} \exp(-(y - 4)^2/30)$$

- **Problem 5.2:** $X[n] = A(-1)^n + B$ is the WSS Gaussian process in which A, B are independent standard Gaussian random variables.
 - (a) Find $R_X(\tau)$. Solution.

$$R_X(\tau) = E[X[n]X[n+\tau]]$$

= $E[A^2](-1)^{2n+\tau} + E[B^2] + E[AB]((-1)^n + (-1)^{n+\tau})$
= $(-1)^{\tau} + 1$

(The last term dropped out because E[AB] = E[A]E[B] = 0.)

- (b) Determine the probability distribution of each 1-D cross-section of the process. Solution. If n is odd, then X[n] = B - A, and this cross-section has a Gaussian distribution with mean 0 and variance 2. If n is even, then X[n] = A + B, which also has a Gaussian distribution with mean 0 and variance 2.
- (c) Explain why the process is not ergodic.

Solution. Notice that

$$X[n]X[n+\tau] = A^{2}(-1)^{\tau} + B^{2} + AB[(-1)^{n}][1+(-1)^{\tau}].$$

Fixing τ , and time-averaging this expression over n, the last term drops out (since $(-1)^n$ oscillates between +1 and -1). However, the other two terms do not drop out, and so we conclude that the time-average of $X[n]X[n + \tau]$ is

$$A^2(-1)^{\tau} + B^2$$

Since this depends on the realization, the process can't be ergodic.

(d) Compute $E[X[n]^4]$.

Solution. From solution to (b), $X[n]/\sqrt{2}$ is standard Gaussian. The fourth moment of a standard Gaussian random variable is 3. (You can obtain this by differentiating the moment generating function $e^{s^2/2}$ four times and then plugging in s = 0.) That is,

$$E[(X[n]/\sqrt{2})^4] = 3.$$

It follows that

 $E[X[n]^4] = 12.$

Problem 5.3: An ergodic WSS Gaussian process

$$X(t), \quad -\infty < t < \infty$$

has autocorrelation function

$$R_X(\tau) = 100e^{-\tau^2}\cos(2\pi\tau) + 10\cos(6\pi\tau) + 36.$$

(a) Find the constant value of E[X(t)] (assuming that this constant value is positive). Solution. Since the process is ergodic, you can compute the following time average to get μ_X^2 :

$$\mu_X^2 = \lim_{T \to \infty} T^{-1} \int_0^T R_X(\tau) d\tau.$$

There are three terms in $R_X(\tau)$ which we can time average separately:

- The time average of $100e^{-\tau^2}\cos(2\pi\tau)$ is zero because this is the limit as $\tau \to \infty$.
- The time average of $10\cos(6\pi\tau)$ is zero because the time average of any sinusoid is zero.
- The time average of 36 is 36.

Our conclusion is that

$$\mu_X^2 = 36$$

Therefore, $\mu_X = \pm 6$. We are told that $\mu_X > 0$, and so

$$E[X(t)] = \mu_X = 6.$$

(b) Find the constant value of $E[X(t)^2]$.

$$E[X(t)^2] = P_X = R_X(0) = 146.$$

(c) Find the constant value of Var[X(t)]. Solution.

$$Var[X(t)] = \sigma_X^2 = R_X(0) - \mu_X^2 = 110.$$

(d) Find the smallest positive value of τ for which the random variables X(t) and $X(t + \tau)$ are uncorrelated.

Solution. Uncorrelated means (see Chapters 3,5)

$$E[X(t)X(t+\tau)] = E[X(t)]E[X(t+\tau)].$$

The left side is $R_X(\tau)$, and the right side is $\mu_X^2 = 36$. So, we find the desired τ by solving the equation

$$100e^{-\tau^2}\cos(2\pi\tau) + 10\cos(6\pi\tau) = 0.$$
 (4)

One solution that can be seen by inspection is $\tau = 0.25$. If one uses Matlab to plot the function of τ on the left side of equation (4), one sees that $\tau = 0.25$ is the smallest positive value of τ which makes this function equal to zero. So, the answer is

$$\tau = 0.25$$

(e) What is the mean and variance of the random variable Y = X(0) + X(1)? What is $P(Y \le 40)$?

$$\mu_Y = E[X(0)] + E[X(1)] = 2 * \mu_X = 12.$$

$$Cov(X(0), X(1)) = E[X(0)X(1)] - \mu_X^2 = R_X(1) - 36 = 46.7879.$$

$$\sigma_Y^2 = Var[X(0)] + Var[X(1)] + 2Cov(X(0), X(1)) = 313.5759.$$

$$P(Y \le 40) = P\left(\frac{Y - \mu_Y}{\sigma_Y} \le \frac{28}{\sqrt{313.5759}}\right) = \Phi(1.5812) = 0.94.$$

6 Independent Increments Processes

Problem 6.1: Two famous "independent increments processes" are the random walk process and the Poisson process. This problem concerns these two processes.

(a) Let

$$X_n, \quad n = 0, 1, 2, 3, \cdots$$

be the random walk process. (Recall that $X_0 = 0$, and that each X_n for n > 1 is the sum of the first *n* samples of the Bernoulli fair-coin-flipping process.) Compute the probability that the random walk process makes its first return to zero at time 6. In other words, compute

$$P[X_1 \neq 0, X_2 \neq 0, X_3 \neq 0, X_4 \neq 0, X_5 \neq 0, X_6 = 0].$$

Solution. The "increments" are:

$$B_{1} = X_{1} - X_{0}$$

$$B_{2} = X_{2} - X_{1}$$

$$B_{3} = X_{3} - X_{2}$$

$$B_{4} = X_{4} - X_{3}$$

$$B_{5} = X_{5} - X_{4}$$

$$B_{6} = X_{6} - X_{5}$$

The sequence of increments $(B_1, B_2, B_3, B_4, B_5, B_6)$ must be one of the following:

$$(+1, +1, +1, -1, -1, -1)$$

 $(-1, -1, -1, +1, +1, +1)$
 $(+1, +1, -1, +1, -1, -1)$
 $(-1, -1, +1, -1, +1, +1)$

By "independent increments" each of these 4 possibilities has probability $(1/2)^6$. The answer is therefore

$$4 * (1/2)^6 = 1/16.$$

(b) Let

$$X(t), t \ge 0$$

be the Poisson process with arrival rate of 0.5 arrivals per second (our time variable t is in seconds). Compute the probability that there are just as many arrivals in the first three seconds as there are in the next four seconds. In other words, compute

$$P[X(7) = 2X(3)].$$

Solution. The desired probability can be decomposed as the following sum:

$$\sum_{k=0}^{\infty} P[X(3) - X(0) = k, X(7) - X(3) = k].$$

By "independent increments", the k-th term can be re-written as:

$$P[X(3) - X(0) = k]P[X(7) - X(3) = k].$$

X(3) - X(0) is a Poisson RV with parameter

 $\alpha = (3 - 0) * 0.5 = 1.5.$

Therefore

$$P[X(3) - X(0) = k] = \exp(-1.5)(1.5)^k / k!.$$

X(7) - X(3) is a Poisson RV with parameter

$$\alpha = (7 - 3) * 0.5 = 2.$$

Therefore

$$P[X(7) - X(3) = k] = \exp(-2)2^k / k!.$$

Our answer is therefore

$$\exp(-3.5)\sum_{k=0}^{\infty} \frac{3^k}{(k!)^2} = 0.2162.$$

Problem 6.2: X(t) is Poisson process with arrival rate $\lambda = 4$.

(a) Compute P[X(1) = 4] and P[X(2) = 2].
Solution. The parameter of the Poisson RV X(1) is 4. Therefore:

$$P[X(1) = 4] = \exp(-4) * \frac{4^4}{4!} = 0.1954$$

The parameter of the Poisson RV X(2) is 8. Therefore:

$$P[X(2) = 2] = \exp(-8) * \frac{8^2}{2} = 0.0107$$

(b) Compute P[X(2) > X(1) + 1]. Solution.

$$P[X(2) > X(1) + 1] = P[X(2) - X(1) > 1] = 1 - P[X(2) - X(1) \le 1]$$

X(2) - X(1) is Poisson with parameter 4. Therefore:

$$P[X(2) > X(1) + 1] = 1 - \exp(-4) - \exp(-4) * 4 = 0.9084$$

(c) Compute P[X(3) > X(2) > X(1)].

Solution. Since the increments X(3) - X(2) and X(2) - X(1) are independent,

$$\begin{split} P[X(3) > X(2) > X(1)] &= P[X(3) - X(2) > 0, \ X(2) - X(1) > 0] \\ &= P[X(3) - X(2) > 0] P[X(2) - X(1) > 0] \end{split}$$

Both X(3) - X(2) and X(2) - X(1) are Poisson with parameter 4. Therefore:

$$P[X(3) > X(2) > X(1)] = (1 - \exp(-4))^2 = 0.9637$$

(d) Compute E[X(2)|X(1) = 5]. Solution. X(2) - X(1) and X(1) are independent. Therefore:

$$E[X(2)|X(1) = 5] = E[X(2) - X(1)|X(1) = 5] + E[X(1)|X(1) = 5]$$

= $E[X(2) - X(1)] + 5$
= $4 + 5 = 9$

(e) Compute E[X(2)X(5)].
 Solution. Using independent increments property of Poisson process again,

$$E[X(2)X(5)] = E[X(2)^{2}] + E[X(2)(X(5) - X(2)]$$

= $E[X(2)^{2}] + E[X(2)]E[X(5) - X(2)]$

X(2) is Poisson with parameter 8, mean 8, variance 8, and second moment $8+8^2 = 72$. X(5) - X(2) is Poisson with parameter 12, mean 12. Therefore:

$$E[X(2)X(5)] = 72 + 8 * 12 = 168$$

Problem 6.3: Let W(t) be a Brownian motion process with parameter $\alpha = 1$. Compute

(a) The correlation coefficient between W(3) and W(9), using independent increments property.

Solution. The mean function of the Brownian motion process is zero. Also,

$$E[W(t)^2] = Var(W(t)) = \alpha t = t,$$

for all $t \geq 0$.

Therefore

$$Cov(W(3), W(9)) = E[W(3)W(9)].$$

We have

$$W(3)W(9) = W(3)[W(9) - W(3) + W(3)] = W(3)[W(9) - W(3)] + W(3)^{2}.$$

By independent increments, W(9) - W(3) and W(3) = W(3) - W(0) are independent; they also each have zero mean. Therefore,

$$E\{W(3)[W(9) - W(3)]\} = E[W(3)]E[W(9) - W(3)] = 0,$$

and so

$$E[W(3)W(9)] = E\{W(3)[W(9) - W(3)]\} + E[W(3)^2] = E[W(3)^2] = 3.$$

We conclude that

$$\rho_{W(3),W(9)} = \frac{Cov(W(3),W(9))}{\sqrt{Var(W(3))}\sqrt{Var(W(9))}} = \frac{3}{\sqrt{3}\sqrt{9}} = \frac{1}{\sqrt{3}}$$

(b) Compute $E[(W(1) + W(2) + W(3))^2]$ using independent increments. Solution.

$$W(1) + W(2) + W(3) = W(1) + 2W(2) + [W(3) - W(2)] = 3W(1) + 2[W(2) - W(1)] + [W(3) - W(2)]$$

Also,

$$W(1) = W(1) - W(0),$$

so we have expressed W(1) + W(2) + W(3) as a linear combination of three increments:

$$W(1) + W(2) + W(3) = 3[W(1) - W(0)] + 2[W(2) - W(1)] + [W(3) - W(2)],$$

Each of the three increments W(1) - W(0), W(2) - W(1), and W(3) - W(2) is a Gaussian(0,1) RV, and these three RV's are independent. It follows that

$$E[(W(1)+W(2)+W(3))^{2}] = 3^{2}E[(W(1)-W(0)^{2}]+2^{2}E[(W(2)-W(1))^{2}]+E[(W(3)-W(2))^{2}] = 3^{2}E[(W(1)-W(0)^{2}] = 3^{2}E[(W(1)-W(0)^{2}]+2^{2}E[(W(1)-W(0)^{2}]+2^{2}E[(W(1)-W(0)^{2}]] = 3^{2}E[(W(1)-W(0)^{2}]+2^{2}E[(W(1)-W(0)^{2}]+2^{2}E[(W(1)-W(0)^{2}]] = 3^{2}E[(W(1)-W(0)^{2}]+2^{2}E[(W(1)-W(0)^{2}]] = 3^{2}E[(W(1)-W(0)^{2}] = 3^{2}E[(W(1)-W(0)^{2}]] = 3^{2}E[(W(1)-W(0)^{2}] = 3^{2}E[(W(1)-W(0)^{2}] = 3^{2}E[(W(1)-W(0)^{2}]] = 3^{2}E[(W(1)-W(0)^{2}] = 3^{2}E[(W(1)-W(0)^{2}]] = 3^{2}E[(W(1)-W(0)^{2}] = 3^{2}E[(W(1)-W(0)^{2}] = 3^{2}E[(W(1)-W(0)^{2}] = 3^{2}E[(W(1)-W(0)^{2}]] = 3^{2}E[(W(1)-W(0)^{2}] = 3^{2}E[(W(1)-W(0)^{2}] = 3^{2}E[(W(1)-W(0)^{2}]] = 3^{2}E[(W(1)-W(0)^{2}] = 3^{2}E[(W(1)-W(0)^{2}] = 3^{2}E[(W(1)-W(0)^{2}] = 3^{2}E[(W(1)-W(0)^{2}]] = 3^{2}E[(W(1)-W(0)^{2}] = 3^{2}E[(W(1)-W$$

(All cross-product terms on right side drop out because of independent increments, that is, for $i \neq j$,

$$E[(W(i) - W(i-1))(W(j) - W(j-1))] = E[W(i) - W(i-1)]E[W(j) - W(j-1)] = 0 * 0 = 0$$

holds.) We conclude that

$$E[(W(1) + W(2) + W(3))^{2}] = 3^{2} + 2^{2} + 1 = 14.$$