Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2002)

Final Exam Results and Solutions

Problem 1. (44 points) The given PDF for X conveniently corresponds to a random choice between two equally-likely standard random variables: event A corresponding to X being exponential and event B corresponding to X being Erlang of order 2, both cases with parameter λ.
(a) (4 pts) Using the Law of Iterated Expectations,

$$
\mathbf{E}[X]=\mathbf{E}[X \mid A] \mathbf{P}(A)+\mathbf{E}[X \mid B] \mathbf{P}(B)=\frac{1}{\lambda} \cdot \frac{1}{2}+\frac{2}{\lambda} \cdot \frac{1}{2}=\frac{3}{2 \lambda}
$$

(b) (4 pts) We could use the Law of Total Variance, but we also know $\operatorname{var}(X)=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}$ where we've already found $\mathbf{E}[X]$ above. Again using the Law of Iterated Expectations,

$$
\begin{aligned}
& \mathbf{E}\left[X^{2}\right]=\mathbf{E}\left[X^{2} \mid A\right] \mathbf{P}(A)+\mathbf{E}\left[X^{2} \mid B\right] \mathbf{P}(B)=\left(\frac{1}{\lambda^{2}}\right.\left.+\left(\frac{1}{\lambda}\right)^{2}\right) \frac{1}{2}+\left(\frac{2}{\lambda^{2}}+\left(\frac{2}{\lambda}\right)^{2}\right) \frac{1}{2}=\frac{4}{\lambda^{2}} \\
& \Rightarrow \operatorname{var}(X)=\frac{4}{\lambda^{2}}-\left(\frac{3}{2 \lambda}\right)^{2}=\frac{7}{4 \lambda^{2}} .
\end{aligned}
$$

(c) (5 pts) The event $\left\{N_{10}=0\right\}$, or zero arrivals during the time interval $[0,10$), is equivalent to the first arrival time X_{1} being greater than 10 . Using the hint to aid with the integration,

$$
\begin{aligned}
\mathbf{P}\left(N_{10}=0\right) & =\mathbf{P}\left(X_{1}>10\right)=\int_{10}^{\infty} f_{X}(x) d x=\frac{1}{2}\left(\int_{10}^{\infty} \lambda e^{-\lambda x} d x+\int_{10}^{\infty} \lambda^{2} x e^{-\lambda x} d x\right) \\
& =\left.\frac{1}{2}\left(-e^{-\lambda x}+(-\lambda x-1) e^{-\lambda x}\right)\right|_{10} ^{\infty}=(5 \lambda+1) e^{-10 \lambda}
\end{aligned}
$$

where we have concluded that $\quad \lim _{x \rightarrow \infty} \lambda x e^{-\lambda x}=0 \quad$ by L'Hopital's Rule.
(d) (i) (6 pts) No. While the process does renew itself at each arrival instant, in the sense that at the instant of an arrival the PDF $f_{X}(x)$ characterizes the time until the next arrival, the $\operatorname{PDF} f_{X}(x)$ does not characterize the time of the next arrival starting from any arbitrary time instant t.

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

Of all distributions discussed in this class, only the exponential and geometric distributions for first-order interarrival times yield a memoryless process, and it's unlikely that there are others.
Aside: To appreciate this, a rather sophisticated argument is as follows. Memoryless implies that, given an arrival has not occurred by time $t>0$, the distribution describing the time beyond t until the next arrival is identical to the original interarrival distribution-mathematically, letting $Y=X-t$, we've just stated that memoryless requires $\quad f_{Y \mid X>t}(x \mid X>t)=f_{X}(x)$ for any $t>0$. Working first with CDFs to express the conditional distribution in terms of the original distribution, and then differentiating with respect to x to express the relationship in terms of PDFs, we obtain

$$
\begin{aligned}
F_{Y \mid X>t}(x \mid X>t) & =\mathbf{P}(X-t \leq x \mid X>t)=\frac{\mathbf{P}(\{X \leq x+t\} \bigcap\{X>t\})}{\mathbf{P}(X>t)} \\
& =\frac{F_{X}(x+t)}{\mathbf{P}(X>t)} \quad \Rightarrow \quad f_{Y \mid X>t}(x \mid X>t)=\frac{f_{X}(x+t)}{\mathbf{P}(X>t)}
\end{aligned}
$$

Hence, if $f_{X}(x)$ is a functional form where a shift by t is cancelled when dividing by the probability that $X>t$, then the process is memoryless (a property arguably unique to exponential functional forms). For example, consider $f_{X}(x)$ of this problem and $t=10$ to leverage the answer of part (c):

$$
\begin{aligned}
\frac{f_{X}(x+10)}{\mathbf{P}(X>10)} & =\frac{\frac{1}{2}\left(\lambda e^{-\lambda(x+10)}+\lambda^{2}(x+10) e^{-\lambda(x+10)}\right)}{(5 \lambda+1) e^{-10 \lambda}}=\frac{\frac{1}{2}\left(\lambda e^{-\lambda x}+\lambda^{2}(x+10) e^{-\lambda x}\right)}{(5 \lambda+1)} \\
& =\frac{\frac{1}{2}\left(\lambda e^{-\lambda x}+\lambda^{2} x e^{-\lambda x}+\lambda^{2} 10 e^{-\lambda x}\right)}{(5 \lambda+1)}=\frac{f_{X}(x)+\lambda^{2} 5 e^{-\lambda x}}{(5 \lambda+1)} \neq f_{X}(x)
\end{aligned}
$$

So it follows that, because $f_{Y \mid X>t}(x \mid X>t) \neq f_{X}(x)$ for at least one value of t, the arrival process is not memoryless.
(ii) (5 pts) For a memoryless process, we know (by the arguments in the text) that $\mathbf{E}[W]=2 \mathbf{E}[X]$. For a process that is not memoryless, we rely on the general formulas (see solutions to Recitation 10) relating W to X and use the answers from parts (a) and (b):

$$
f_{W}(w)=\frac{w f_{X}(w)}{\mathbf{E}[X]} \quad \Rightarrow \quad \mathbf{E}[W]=\frac{\mathbf{E}\left[X^{2}\right]}{\mathbf{E}[X]}=\frac{\frac{4}{\lambda^{2}}}{\frac{3}{2 \lambda}}=\frac{8}{3 \lambda}
$$

(e) We are given that $T_{K}=X_{1}+X_{2}+\ldots X_{K}$ where K is the sum of six independent and identicallydistributed Bernoulli trials, each with success probability $\frac{1}{2}$.
(i) (4 pts) Thus, K is described by a binomial distribution with parameters $n=6$ and $p=\frac{1}{2}$, and therefore $\mathbf{E}[K]=n p=3$ and $\operatorname{var}(K)=n p(1-p)=\frac{3}{2}$.
(ii) (4 pts) T_{K} is a sum of a random number of independent random variables, so

$$
\mathbf{E}\left[T_{K}\right]=\mathbf{E}[X] \mathbf{E}[K]=\frac{9}{2 \lambda} \quad \text { and } \quad \operatorname{var}\left(T_{K}\right)=\operatorname{var}(X) \mathbf{E}[K]+(\mathbf{E}[X])^{2} \operatorname{var}(K)=\frac{69}{8 \lambda^{2}}
$$

(f) Define the sample mean by $M_{n}=\left(X_{1}+X_{2}+\ldots+X_{n}\right) / n$ and let $\mu=\mathbf{E}[X]$.
(i) (6 pts) Note that $\mathbf{P}\left(A_{n}\right)=\mathbf{P}\left(\left|M_{n}-\mu\right| \geq 10^{-6}\right)$ and so, by the WLLN where $\epsilon=10^{-6}$, $\lim _{n \rightarrow \infty} \mathbf{P}\left(A_{n}\right)=0$.
(ii) (6 pts) Note that $\mathbf{P}\left(\lim _{n \rightarrow \infty} B_{n}\right)=\mathbf{P}\left(\lim _{n \rightarrow \infty} M_{n} \neq \mu\right)=1-\mathbf{P}\left(\lim _{n \rightarrow \infty} M_{n}=\mu\right)=0$ because, by the SLLN, $\mathbf{P}\left(\lim _{n \rightarrow \infty} M_{n}=\mu\right)=1$.

Massachusetts Institute of Technology Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

Problem 2. (54 points) A state transition (not necessarily a change-of-state) occurs every hour, on the hour. Though self-transitions are not explicitly shown, because the sum of all transition probabilites from a state i must be one, we deduce $p_{00}=0.50, p_{11}=0.30$ and $p_{22}=0.36$.
(a) (6 pts) A self-transition in state 0 corresponds to the cafe being empty and no passengers arriving on the next shuttle, which occurs with probability $p_{K}(0)=p=p_{00}=0.5 \Rightarrow p=0.5$. A transition from state 1 to state 0 corresponds to the single customer ending the session and no passengers arriving on the next shuttle, which by independence occurs with probability $q \cdot p_{K}(0)=q p=p_{10}=0.4 \Rightarrow q=0.8$.

Aside: While it is possible to deduce from the problem description that

$$
\begin{aligned}
& p_{01}=p(1-p), \quad p_{02}=\sum_{k=2}^{\infty} p(1-p)^{k}=(1-p)^{2}, \quad p_{11}=q p(1-p)+(1-q) p=p(1-q p), \\
& p_{12}=q \sum_{k=2}^{\infty} p(1-p)^{k}+(1-q) \sum_{k=1}^{\infty} p(1-p)^{k}=1-p(1+q-q p), \quad p_{20}=q^{2} p, \\
& p_{21}=q^{2} p(1-p)+\binom{2}{1} q(1-q) p=q p(2-q(1+p)), \\
& p_{22}=q^{2} \sum_{k=2}^{\infty} p(1-p)^{k}+\binom{2}{1} q(1-q) \sum_{k=1}^{\infty} p(1-p)^{k}+(1-q)^{2}=1-q p(2-q p)
\end{aligned}
$$

and then equate any subset of the above transition probabilities to the values in the graph to solve for parameters p and q, it is clearly more effort than simply using p_{00} and p_{10}.
(b) (6 pts) The chain forms a single recurrent class and is aperiodic; thus, the steady-state probabilities satisfy the equations

$$
\begin{aligned}
& \pi_{0}=0.50 \pi_{0}+0.40 \pi_{1}+0.32 \pi_{2} \\
& \pi_{1}=0.25 \pi_{0}+0.30 \pi_{1}+0.32 \pi_{2} \\
& \pi_{2}=0.25 \pi_{0}+0.30 \pi_{1}+0.36 \pi_{2}
\end{aligned}
$$

Combining any two of these equations with $\pi_{0}+\pi_{1}+\pi_{2}=1$ yields, after some algebra, $\pi_{0}=\frac{176}{421}$, $\pi_{1}=\frac{120}{421}$, and $\pi_{2}=\frac{125}{421}$.
(c) (8 pts) Let X_{5} and X_{6} denote the state just after 5 am and 6 am , respectively, and note that after months of operation we can safely assume that $\mathbf{P}\left(X_{5}=i\right) \approx \pi_{i}$:

$$
\begin{aligned}
\mathbf{P}\left(X_{6}>X_{5} \mid X_{6} \neq X_{5}\right) & =\frac{\mathbf{P}\left(X_{6}>X_{5} \bigcap X_{6} \neq X_{5}\right)}{\mathbf{P}\left(X_{6} \neq X_{5}\right)}=\frac{\mathbf{P}\left(X_{6}>X_{5}\right)}{\mathbf{P}\left(X_{6} \neq X_{5}\right)} \\
& =\frac{\sum_{i=0}^{2} \mathbf{P}\left(X_{6}>X_{5} \mid X_{5}=i\right) \pi_{i}}{\sum_{i=0}^{2} \mathbf{P}\left(X_{6} \neq X_{5} \mid X_{5}=i\right) \pi_{i}}=\frac{0.50 \pi_{0}+0.30 \pi_{1}}{0.50 \pi_{0}+0.70 \pi_{1}+0.64 \pi_{2}}=\frac{31}{63}
\end{aligned}
$$

(d) During an hour when the cafe is empty (i.e., state 0), zero messages are generated; during an hour when the cafe has a single customer (i.e., state 1), messages are generated at a Poisson rate of λ per hour; during an hour when the cafe has two customers (i.e., state 2), messages are generated at a Poisson rate of 2λ per hour.
(i) (8 pts) Let X_{10} denote the state just after 10 am and, again assuming the process is in steady-state, we have $\mathbf{P}\left(X_{10}=i\right) \approx \pi_{i}$. Letting event $A_{i}=\left\{X_{10}=i\right\}$ and noting that we are interested in the number of Poisson arrivals in $\tau=0.5$ hours,

$$
p_{N}(n)=\sum_{i=0}^{2} \pi_{i} \mathbf{P}\left(N=n \mid A_{i}\right)= \begin{cases}\pi_{0}+\pi_{1} \mathbf{P}\left(N=0 \mid A_{1}\right)+\pi_{2} \mathbf{P}\left(N=0 \mid A_{2}\right) & , \quad n=0 \\ \pi_{1} \frac{\mathbf{P}\left(N=n \mid A_{1}\right)}{\mathbf{P}\left(N \neq 0 \mid A_{1}\right)}+\pi_{2} \frac{\mathbf{P}\left(N=n \mid A_{2}\right)}{\mathbf{P}\left(N \neq 0 \mid A_{2}\right)} & , \quad n=1,2, \ldots\end{cases}
$$

$$
= \begin{cases}\pi_{0}+\pi_{1} e^{-0.5 \lambda}+\pi_{2} e^{-\lambda} & , \quad n=0 \\ \pi_{1} \frac{(0.5 \lambda)^{n} e^{-0.5 \lambda}}{1-e^{-0.5 \lambda}}+\pi_{2} \frac{\lambda^{n} e^{-\lambda}}{1-e^{-\lambda}} & , \quad n=1,2, \ldots\end{cases}
$$

(ii) (10 pts) By definition of a Poisson process, the time until each individual customer generates a first message is an exponential random variable with parameter λ. Given also that each customer generates at least one message in the hour, an event with probability $1-e^{-\lambda}$, the conditional PDF characterizing the arrival time Z of a customer's first message becomes

$$
f_{Z}(z)=\frac{\lambda e^{-\lambda z}}{1-e^{-\lambda}} \quad, \quad 0<z<1
$$

Note that random variable $Y=\max \left\{Z_{1}, Z_{2}\right\}$, where Z_{1} and Z_{2}, denoting the time until customer 1 and 2 , respectively, generate their first messages, are independent and identically distributed with PDF $f_{Z}(z)$. We now derive the PDF for Y by first relating its CDF to random variable Z and then taking the derivative:

$$
\begin{aligned}
F_{Y}(y) & =\mathbf{P}(Y \leq y)=\mathbf{P}\left(\max \left\{Z_{1}, Z_{2}\right\} \leq y\right)=\mathbf{P}\left(Z_{1} \leq y \bigcap Z_{2} \leq y\right) \\
& =\mathbf{P}\left(Z_{1} \leq y\right) \mathbf{P}\left(Z_{2} \leq y\right)=\mathbf{P}(Z \leq y)^{2}=\left[F_{Z}(y)\right]^{2} \\
\Rightarrow f_{Y}(y) & =\frac{d}{d y}\left[F_{Z}(y)\right]^{2}=2 F_{Z}(y) \cdot f_{Z}(y)=2\left(\frac{1-e^{-\lambda y}}{1-e^{-\lambda}}\right)\left(\frac{\lambda e^{-\lambda y}}{1-e^{-\lambda}}\right) \\
& =\frac{2 \lambda e^{-\lambda y}\left(1-e^{-\lambda y}\right)}{\left(1-e^{-\lambda}\right)^{2}}, \quad 0<y<1
\end{aligned}
$$

(e) (i) (8 pts) Let L be the number of prizes awarded during the promotion. The owner's requirement states $\mathbf{P}(L=150) \geq 0.8=\frac{4}{5}$. We view the promotion as a Bernoulli process, where a success on the w th trial corresponds to a prize being awarded in the w th week. Thus, each Bernoulli trial X_{w} has success probability α. The promotion lasts $W=\min \left\{Y_{150}, 200\right\}$ weeks, where Y_{150} denotes the number of trials until the 150 th success (characterized by a Pascal PMF of order 150). It follows that

$$
L=X_{1}+X_{2}+\ldots+X_{W} \leq X_{1}+X_{2}+\ldots+X_{200} \quad \Rightarrow \mathbf{E}[L] \leq 200 \mathbf{E}\left[X_{w}\right]
$$

so, combining the boss's requirement with the Markov inequality (and noticing that L can be at most 150),

$$
\frac{4}{5} \leq \mathbf{P}(L=150)=\mathbf{P}(L \geq 150) \leq \frac{\mathbf{E}[L]}{150} \leq \frac{200 \mathbf{E}\left[X_{w}\right]}{150}=\frac{4 \alpha}{3} \Rightarrow \alpha \geq \frac{3}{4} \cdot \frac{4}{5}=\frac{3}{5}
$$

(ii) (8 pts) In a full week, there will be $24 \cdot 7=168$ shuttle arrivals, with the i th shuttle delivering K_{i} passengers where the K_{i} s are independent and identically distributed. The total number of passengers in any week is then

$$
N=K_{1}+K_{2}+\ldots K_{168} \quad \Rightarrow \mathbf{E}[N]=168 \mathbf{E}\left[K_{i}\right] \quad \text { and } \quad \operatorname{var}(N)=168 \operatorname{var}\left(K_{i}\right)
$$

where $\mathbf{E}\left[K_{i}\right]=\frac{1}{p}-1=\frac{1-p}{p}$ and $\operatorname{var}\left(K_{i}\right)=\frac{1-p}{p^{2}}$. We wish to choose n no greater than the value at which $\mathbf{P}(N \geq n)=\alpha$. Using a CLT approximation, with the DeMoivre-Laplace correction to account for N being discrete,

$$
\mathbf{P}(N \geq n)=\mathbf{P}\left(\frac{N-\mathbf{E}[N]}{\sqrt{\operatorname{var}(N)}} \geq \frac{n-\mathbf{E}[N]}{\sqrt{\operatorname{var}(N)}}\right) \approx 1-\Phi\left(\frac{n-\frac{1}{2}-\mathbf{E}[N]}{\sqrt{\operatorname{var}(N)}}\right)
$$

and so, in terms of parameters p and α, we choose $1 \leq n \leq n_{0}$ where n_{0} is no greater than the value of n that satisfies

$$
\Phi\left(\frac{p\left(n-\frac{1}{2}\right)-168(1-p)}{\sqrt{168(1-p)}}\right)=1-\alpha
$$

