Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2002)

Quiz 2 Results (6.041 only)

(6.431 results will be available before Wed)

- Solutions to the 6.041 quiz are on the next page.
- Regrade Policy: Students who feel there is an error in the grading of their quiz have until Wednesday, November 13 to submit the regrade request to their TA. Do not write anything at all on the exam booklet! Instead attach a note on a separate piece of paper explaining the putative error. Any attempt to modify a quiz booklet is considered a serious breach of academic honesty. We photocopy a substantial fraction of the quizzes before they are returned, implying there exists a nonzero probability of us catching such a change. We also reserve the right to regrade the entire quiz, not just the problem with the putative error.

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

6.041 Quiz 2 Solutions

Problem 1: The key insight is that Y_{m} is a sum of independent (perhaps scaled) random variables.
(a) (14 pts) Because the V_{k} 's are identically distributed, $\mathbf{E}\left[V_{k}\right]=\mathbf{E}\left[V_{1}\right]=\mu_{V}$. By linearity of expectation and the fact that X is zero-mean,

$$
\mathbf{E}\left[Y_{m}\right]=\mathbf{E}\left[\alpha^{m} X+\sum_{i=1}^{m} \alpha^{m-i} V_{i}\right]=\alpha^{m} \mathbf{E}[X]+\sum_{i=1}^{m} \alpha^{m-i} \mathbf{E}\left[V_{i}\right]=\sum_{i=1}^{m} \alpha^{m-i} \mu_{V} \quad\left[=\frac{\mu_{V}\left(1-\alpha^{m}\right)}{1-\alpha}\right]
$$

(b) (14 pts) All V_{k} 's have the identical transform $M_{V}(s)$ and $M_{X}(s)=e^{\sigma_{X}^{2} s^{2} / 2}$. By properties of the exponential and the stated independence of X and the V_{k} 's,

$$
\begin{aligned}
\mathbf{E}\left[e^{s Y_{m}}\right] & \left.=\mathbf{E}\left[e^{s\left(\alpha^{m} X+\sum_{i=1}^{m} \alpha^{m-i} V_{i}\right.}\right)\right]=\mathbf{E}\left[e^{s \alpha^{m} X} \prod_{i=1}^{m} e^{s \alpha^{m-i} V_{i}}\right]=\mathbf{E}\left[e^{s \alpha^{m} X}\right] \prod_{i=1}^{m} \mathbf{E}\left[e^{s \alpha^{m-i} V_{i}}\right] \\
& =M_{X}\left(\alpha^{m} s\right) \prod_{i=1}^{m} M_{V}\left(\alpha^{m-i} s\right)=e^{\sigma_{X}^{2} \alpha^{2 m} s^{2} / 2} \prod_{i=1}^{m} M_{V}\left(\alpha^{m-i} s\right)
\end{aligned}
$$

(c) (14 pts) Conditioning on the possible values of N,

$$
\begin{aligned}
\mathbf{E}\left[e^{s Y_{N}}\right] & =\mathbf{E}\left[e^{s Y_{N}} \mid N=m\right] p_{N}(m)+\mathbf{E}\left[e^{s Y_{N}} \mid N=m+1\right] p_{N}(m+1)=\mathbf{E}\left[e^{s Y_{m}}\right] \frac{3}{4}+\mathbf{E}\left[e^{s Y_{m+1}}\right] \frac{1}{4} \\
& =\frac{3}{4}\left(e^{\sigma_{X}^{2} \alpha^{2 m} s^{2} / 2} \prod_{i=1}^{m} M_{V}\left(\alpha^{m-i} s\right)\right)+\frac{1}{4}\left(e^{\sigma_{X}^{2} \alpha^{2(m+1)} s^{2} / 2} \prod_{i=1}^{m+1} M_{V}\left(\alpha^{m+1-i} s\right)\right)
\end{aligned}
$$

Problem 2: The key insight is that, for every $k \geq 1, Y_{k}$ is independent of each V_{j} for $j>k$. Also, given the V_{k} 's are zero-mean (as well as X) implies the Y_{k} 's are zero mean.
(a) (14 pts) Given $\operatorname{var}\left(Y_{k}\right)=\operatorname{var}\left(Y_{0}\right)=\operatorname{var}(X)=\sigma_{X}^{2}$ and the independence between V_{k} and Y_{k-1},

$$
\operatorname{var}\left(Y_{k}\right)=\operatorname{var}\left(\alpha Y_{k-1}+V_{k}\right)=\alpha^{2} \operatorname{var}\left(Y_{k-1}\right)+\operatorname{var}\left(V_{k}\right) \quad \Rightarrow \quad \operatorname{var}\left(V_{k}\right)=\sigma_{X}^{2}-\alpha^{2} \sigma_{X}^{2}=\left(1-\alpha^{2}\right) \sigma_{X}^{2}
$$

(b) (14 pts) We know a Gaussian multiplied by a constant remains Gaussian and also that the sum of independent Gaussians is a Gaussian. Hence, with $Y_{0}=X$ given to be Gaussian, Y_{k} for $k \geq 1$ will also be Gaussian provided the V_{k} 's are Gaussian; use mean as given and variance as found in part (a).
(c) (14 pts) Using the recursion, $Y_{i-1}=\alpha Y_{i-2}+V_{i-1}$ and $Y_{i}=\alpha Y_{i-1}+V_{i}=\alpha^{2} Y_{i-2}+\alpha V_{i-1}+V_{i}$. Therefore, by linearity of expectation, exploiting independence and employing the "Pull-Through Property" (proved in problem set 7),

$$
\begin{aligned}
\mathbf{E}\left[Y_{i} Y_{i-1} \mid Y_{i-2}\right] & =\mathbf{E}\left[\left(\alpha^{2} Y_{i-2}+\alpha V_{i-1}+V_{i}\right)\left(\alpha Y_{i-2}+V_{i-1}\right) \mid Y_{i-2}\right] \\
& =\alpha^{3} \mathbf{E}\left[Y_{i-2}^{2} \mid Y_{i-2}\right]+\alpha^{2} \mathbf{E}\left[Y_{i-2} V_{i-1} \mid Y_{i-2}\right]+\alpha^{2} \mathbf{E}\left[V_{i-1} Y_{i-2} \mid Y_{i-2}\right]+\alpha \mathbf{E}\left[V_{i-1}^{2} \mid Y_{i-2}\right]+ \\
& \alpha \mathbf{E}\left[V_{i} Y_{i-2} \mid Y_{i-2}\right]+\mathbf{E}\left[V_{i} V_{i-1} \mid Y_{i-2}\right] \\
& =\alpha^{3} Y_{i-2}^{2}+2 \alpha^{2} Y_{i-2} \mathbf{E}\left[V_{i-1}\right]+\alpha \mathbf{E}\left[V_{i-2}^{2}\right]+\alpha Y_{i-2} \mathbf{E}\left[V_{i}\right]+\mathbf{E}\left[V_{i}\right] \mathbf{E}\left[V_{i-1}\right] \\
& =\alpha^{3} Y_{i-2}^{2}+\alpha\left(1-\alpha^{2}\right) \sigma_{X}^{2}
\end{aligned}
$$

where the last step follows from the V_{k} 's being zero-mean and so $\mathbf{E}\left[V_{i}^{2}\right]=\operatorname{var}\left(V_{i}\right)$.
(d) (14 pts) We know the Y_{k} 's are zero-mean and $\operatorname{var}\left(Y_{k}\right)=\sigma_{X}^{2}$. Thus,

$$
g_{L}\left(Y_{k}\right)=\mathbf{E}\left[Y_{k-1}\right]+\frac{\operatorname{cov}\left(Y_{k-1} Y_{k}\right)}{\operatorname{var}\left(Y_{k}\right)}\left(Y_{k}-\mathbf{E}\left[Y_{k}\right]\right)=\frac{\operatorname{cov}\left(Y_{k} Y_{k-1}\right)}{\sigma_{X}^{2}} Y_{k}=\alpha Y_{k}
$$

because

$$
\operatorname{cov}\left(Y_{k} Y_{k-1}\right)=\mathbf{E}\left[Y_{k} Y_{k-1}\right]-\mathbf{E}\left[Y_{k}\right] \mathbf{E}\left[Y_{k-1}\right]=\mathbf{E}\left[\left(\alpha Y_{k-1}+V_{k}\right) Y_{k-1}\right]=\mathbf{E}\left[\alpha Y_{k-1}^{2}+V_{k} Y_{k-1}\right]=\alpha \sigma_{X}^{2}
$$

(The same answer could be obtained via the Law of Iterated Expectations on the answer for part (c).)

