
Massachusetts Institute of Technology 
Department of Electrical Engineering & Computer Science 

6.041/6.431: Probabilistic Systems Analysis 
(Fall 2002) 

Quiz 2 Results (6.041 only) 

(6.431 results will be available before Wed) 

• Solutions to the 6.041 quiz are on the next page. 

•	 Regrade Policy: Students who feel there is an error in the grading of their quiz have until Wednesday, 
November 13 to submit the regrade request to their TA. Do not write anything at all on the 
exam booklet! Instead attach a note on a separate piece of paper explaining the putative error. Any 
attempt to modify a quiz booklet is considered a serious breach of academic honesty. We photocopy a 
substantial fraction of the quizzes before they are returned, implying there exists a nonzero probability 
of us catching such a change. We also reserve the right to regrade the entire quiz, not just the problem 
with the putative error. 
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Massachusetts Institute of Technology 
Department of Electrical Engineering & Computer Science 

6.041/6.431: Probabilistic Systems Analysis 
(Fall 2002) 

6.041 Quiz 2 Solutions 

Problem 1: The key insight is that Ym is a sum of independent (perhaps scaled) random variables. 

(a)	 (14 pts) Because the Vk’s are identically distributed, E[Vk] = E[V1] = µV . By linearity of expectation 
and the fact that X is zero-mean, 

m m m 

E[Ym] = E[αmX + αm−iVi] = αmE[X] + αm−iE[Vi] = αm−i µV = 
µV (1 − αm) 

1 − α 
i=1 i=1 i=1 

(b) (14 pts) All Vk’s have the identical transform MV (s) and MX (s) = e σ
2 
X s 2 /2 . By properties of the 

exponential and the stated independence of X and the Vk’s, 
m m 

m � � 
E[e sYm ] = E[e s(αm X+ 

i=1 
αm−i Vi )] = E[e sαm X e sαm−i Vi ] = E[e sαm X ] E[e sαm−i Vi ] 

i=1 i=1 
m m 

X α
2m s 2 /2 MV (α

m−i s)= MX (α
m s) MV (α

m−i s) = e σ
2 

i=1 i=1 

(c) (14 pts) Conditioning on the possible values of N , 

E[e sYN ] = E[e sYN | N = m]pN (m) + E[e sYN | N = m + 1]pN (m + 1) = E[e sYm ]
3 

+ E[e sYm+1 ]
1 

4 4 
m m+1 

3 σ2 
X α

2(m+1) s 2 /2 MV (α
m+1−i s)X α

2m s 2 /2 MV (α
m−i s) +

1 
e σ

2 

= e 
4 4 

i=1 i=1 

Problem 2: The key insight is that, for every k ≥ 1, Yk is independent of each Vj for j > k. Also, given 
the Vk’s are zero-mean (as well as X) implies the Yk ’s are zero mean. 

(a) (14 pts) Given var(Yk ) = var(Y0) = var(X) = σ2 and the independence between Vk and Yk−1,X 

X − α2σ2 = 1 − α2 σ2 var(Yk) = var(αYk−1 + Vk ) = α2 var(Yk−1) + var(Vk ) ⇒ var(Vk ) = σ2 
X X 

(b)	 (14 pts) We know a Gaussian multiplied by a constant remains Gaussian and also that the sum of 
independent Gaussians is a Gaussian. Hence, with Y0 = X given to be Gaussian, Yk for k ≥ 1 will also 
be Gaussian provided the Vk’s are Gaussian; use mean as given and variance as found in part (a). 

(c)	 (14 pts) Using the recursion, Yi−1 = αYi−2 + Vi−1 and Yi = αYi−1 + Vi = α2Yi−2 + αVi−1 + Vi. There-
fore, by linearity of expectation, exploiting independence and employing the “Pull-Through Property” 
(proved in problem set 7), 

E[YiYi−1|Yi−2] = E[(α2Yi−2 + αVi−1 + Vi)(αYi−2 + Vi−1)|Yi−2] 

= α3E[Y 2 
i−1|Yi−2] +i−2|Yi−2] + α2E[Yi−2Vi−1|Yi−2] + α2E[Vi−1Yi−2|Yi−2] + αE[V 2 

αE[ViYi−2|Yi−2] + E[ViVi−1|Yi−2] 

= α3Y 2 
i−2] + αYi−2E[Vi] + E[Vi]E[Vi−1]i−2 + 2α2Yi−2E[Vi−1] + αE[V 2 

= α3Y 2 
i−2 + α 1 − α2 σ2 

X 

where the last step follows from the Vk ’s being zero-mean and so E[Vi 
2] = var(Vi). 

(d) (14 pts) We know the Yk ’s are zero-mean and var(Yk ) = σ2 
X . Thus, 

cov(Yk−1Yk ) cov(Yk Yk−1) 
gL(Yk ) = E[Yk−1] + 

var(Yk)
(Yk − E[Yk ]) = 

σ2 Yk = αYk 
X 

because 

cov(YkYk−1) = E[YkYk−1] − E[Yk ]E[Yk−1] = E[(αYk−1 + Vk )Yk−1] = E[αYk 
2 
−1 + Vk Yk−1] = ασ2 

X 

(The same answer could be obtained via the Law of Iterated Expectations on the answer for part (c).) 
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