LECTURE 3

• Readings: Sections 1.3-1.4

Lecture outline

- Review
- Conditional probability
- Three important tools:
- Multiplication rule
- Total probability theorm
- Bayes' rule

Review of probability models

• Allocation of probabilities to events

then $P(A \cup B) = P(A) + P(B)$

3'. If A_1, A_2, \ldots are disjoint events, then:

 $\mathbf{P}(A_1 \cup A_2 \cup \cdots) = \mathbf{P}(A_1) + \mathbf{P}(A_2) + \cdots$

Sample space
Mutually exclusive
Collectively exhaustive

1. P(A) > 0

2. P(universe) = 1

• Problem solving:

- Calculate...

- Setup sample space

Define probability lawIdentify event of interest

3. If $A \cap B = \emptyset$,

- Right granularity

Conditional probability

- $\mathbf{P}(A | B) =$ probability of A, given that B occurred
- B is our new universe
- **Definition:** Assuming $P(B) \neq 0$,

$$\mathbf{P}(A \mid B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}$$

Die roll example

- Let B be the event: min(X, Y) = 2
- Let $M = \max(X, Y)$
- $P(M = 1 \mid B) =$
- P(M = 2 | B) =

Models based on conditional probabilities

• Event *A*: Airplane is flying above Event *B*: Something registers on radar screen

 $\mathbf{P}(B) =$

 $\mathbf{P}(A \mid B) =$

 $\mathbf{P}(A \cap B \cap C) = \mathbf{P}(A)\mathbf{P}(B \mid A)\mathbf{P}(C \mid A \cap B)$

Total probability theorem

- Divide and conquer
- Partition of sample space into A_1, A_2, A_3

• One way of computing **P**(*B*):

$$P(B) = P(A_1)P(B | A_1)$$

+ P(A_2)P(B | A_2)
+ P(A_3)P(B | A_3)

Bayes' rule

- Rules for combining evidence
- "Prior" probabilities $P(A_i)$
- We know $\mathbf{P}(B \mid A_i)$ for each i
- Wish to compute $\mathbf{P}(A_i \mid B)$

$$P(A_i | B) = \frac{P(A_i \cap B)}{P(B)}$$
$$= \frac{P(A_i)P(B | A_i)}{P(B)}$$
$$= \frac{P(A_i)P(B | A_i)}{\sum_j P(A_j)P(B | A_j)}$$

The game show

• We have a prize hidden in one of the three envelopes and you are told the contents of one of the envelopes you did not choose - should you switch?