LECTURE 3

- Readings: Sections 1.3-1.4

Lecture outline

- Review
- Conditional probability
- Three important tools:
- Multiplication rule
- Total probability theorm
- Bayes' rule

Review of probability models

- Sample space
- Mutually exclusive
- Collectively exhaustive
- Right granularity
- Allocation of probabilities to events

1. $\mathbf{P}(A) \geq 0$
2. \mathbf{P} (universe) $=1$
3. If $A \cap B=\varnothing$,

$$
\text { then } \mathbf{P}(A \cup B)=\mathbf{P}(A)+\mathbf{P}(B)
$$

3'. If A_{1}, A_{2}, \ldots are disjoint events, then: $\mathbf{P}\left(A_{1} \cup A_{2} \cup \cdots\right)=\mathbf{P}\left(A_{1}\right)+\mathbf{P}\left(A_{2}\right)+\cdots$

- Problem solving:
- Setup sample space
- Define probability Iaw
- Identify event of interest
- Calculate...

Conditional probability

$\mathbf{P}(A \mid B)=$ probability of A,
given that B occurred
$-B$ is our new universe

- Definition: Assuming $\mathbf{P}(B) \neq 0$,

$$
\mathbf{P}(A \mid B)=\frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}
$$

Die roll example

- Let B be the event: $\min (X, Y)=2$
- Let $M=\max (X, Y)$
- $\mathbf{P}(M=1 \mid B)=$
- $\mathbf{P}(M=2 \mid B)=$

Models based on conditional

probabilities

- Event A: Airplane is flying above Event B : Something registers on radar screen

$\mathbf{P}(A \cap B)=$
$\mathbf{P}(B)=$
$\mathbf{P}(A \mid B)=$

Multiplication rule

$\mathbf{P}(A \cap B \cap C)=\mathbf{P}(A) \mathbf{P}(B \mid A) \mathbf{P}(C \mid A \cap B)$

Total probability theorem

- Divide and conquer
- Partition of sample space into A_{1}, A_{2}, A_{3}

- One way of computing $\mathbf{P}(B)$:

$$
\begin{aligned}
\mathbf{P}(B)= & \mathbf{P}\left(A_{1}\right) \mathbf{P}\left(B \mid A_{1}\right) \\
+ & \mathbf{P}\left(A_{2}\right) \mathbf{P}\left(B \mid A_{2}\right) \\
& +\mathbf{P}\left(A_{3}\right) \mathbf{P}\left(B \mid A_{3}\right)
\end{aligned}
$$

Bayes' rule

- Rules for combining evidence
- "Prior" probabilities $\mathbf{P}\left(A_{i}\right)$
- We know $\mathbf{P}\left(B \mid A_{i}\right)$ for each i
- Wish to compute $\mathbf{P}\left(A_{i} \mid B\right)$

$$
\begin{aligned}
\mathbf{P}\left(A_{i} \mid B\right) & =\frac{\mathbf{P}\left(A_{i} \cap B\right)}{P(B)} \\
& =\frac{\mathbf{P}\left(A_{i}\right) \mathbf{P}\left(B \mid A_{i}\right)}{\mathbf{P}(B)} \\
& =\frac{\mathbf{P}\left(A_{i}\right) \mathbf{P}\left(B \mid A_{i}\right)}{\sum_{j} \mathbf{P}\left(A_{j}\right) \mathbf{P}\left(B \mid A_{j}\right)}
\end{aligned}
$$

The game show

- We have a prize hidden in one of the three envelopes and you are told the contents of one of the envelopes you did not choose - should you switch?

