LECTURE 49. Readings: Section 1.59. Review9. Independence of two events10. Independence of a collection of eventsReview	Models based on conditional probabilities • 3 tosses of a biased coin: P(H) = p, P(T) = 1 - p $P(H) = p, P(T) = 1 - p$ $P(THT) = P(THT) = P(1 head) = P(first toss is H 1 head) = P$	Independence of two events • Defn: $P(A \cap B) = P(A) \cdot P(B)$ $- \text{Recall } P(A \cap B) = P(A) \cdot P(B \mid A)$ $- \text{Independence is same as}$ $P(B \mid A) = P(B)$ and $P(A \mid B) = P(A)$
Conditioning may affect independenceAssume A and B are independent	 Conditioning may affect independence Two unfair coins, A and B: D(U crip 4) = 0.0 D(U crip B) = 0.1 	Independence of a collection of eventsIntuitive definition:

- A
- If we are told that *C* occurred, are *A* and *B* independent?

 Two unfair coins, A and B: P(H | coin A) = 0.9, P(H | coin B) = 0.1 choose either coin with equal probability

- Once we know it is coin *A*, are future tosses independent?
- If we do not know which coin it is, are future tosses independent?
- Compare: P(toss 11 = H)

P(toss 11 = H | first 10 tosses are heads)

- Intuitive definition: Information on some of the events tells us nothing about probabilities related to the remaining events
- E.g., $P(A_1 \cap (A_2^c \cup A_3) | A_5 \cap A_6^c)$ = $P(A_1 \cap (A_2^c \cup A_3))$
- Mathematical definition:
 For any distinct *i*, *j*, ..., *q*,

 $\mathbf{P}(A_i \cap A_j \cap \dots \cap A_q) = \mathbf{P}(A_i)\mathbf{P}(A_j) \cdots \mathbf{P}(A_q)$

Independence vs. pairwise independence	Decoding of noise corrupted messages	Radar example from last timeEvent A: Airplane is flying above
• Two independent fair coin tosses - A: First toss is H - B: Second toss is H - $P(A) = P(B) = 1/2$ HH HT TH TT	• Prior probabilities: $P(a) = 1/3, P(b) = 2/3$ $\int_{a}^{b} \frac{1}{100} \int_{a}^{b} \frac{1}{1000} \int_{a}^{b} \frac{1}{1000} \int_{a}^{b} \frac{1}{1000} \int_{a}^{b} \frac{1}{1000} \int_{a}^{b} \frac{1}{1000} \int_{a}^{b} \frac{1}{1000} \int_{a}^{b} \frac{1}{10000} \int_{a}^{b} \frac{1}{10000000000000000000000000000000000$	Event B: Something registers on radar screen $P(A)=0.05$ $P(B \mid A)=0.01$ $P(B' \mid A)=0.10$ $P(B' \mid A')=0.10$ $P(B' \mid A')=0.90$
 C: First and second toss have same outcome P(C) = P(C ∩ A) = 	• Received 0001. What was transmitted? $P(a \mid 0001) = \frac{P(a)P(0001 \mid a)}{P(a)P(0001 \mid a) + P(b)P(0001 \mid b)}$	P(airplane register) = P(A B)
$- \mathbf{P}(A \cap B \cap C) = $ $- \mathbf{P}(C \mid A \cap B) =$	P(a)P(0001 a) + P(b)P(0001 b)	$= \frac{\mathbf{P}(A)\mathbf{P}(B \mid A)}{\mathbf{P}(B)}$
 Pairwise independence does not imply independence 		=