LECTURE 4

- Readings: Section 1.5
- Review
- Independence of two events
- Independence of a collection of events

Review

$\mathbf{P}(A \mid B)=\frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}, \quad$ assuming $\mathbf{P}(B)>0$

- Multiplication rule:
$\mathbf{P}(A \cap B)=\mathbf{P}(B) \cdot \mathbf{P}(A \mid B)=\mathbf{P}(A) \cdot \mathbf{P}(B \mid A)$
- Total probability theorem:
$\mathbf{P}(B)=\mathbf{P}(A) \mathbf{P}(B \mid A)+\mathbf{P}\left(A^{c}\right) \mathbf{P}\left(B \mid A^{c}\right)$
- Bayes rule:

$$
\mathbf{P}\left(A_{i} \mid B\right)=\frac{\mathbf{P}\left(A_{i}\right) \mathbf{P}\left(B \mid A_{i}\right)}{\mathbf{P}(B)}
$$

Conditioning may affect independence

- Assume A and B are independent

- If we are told that C occurred are A and B independent?

Models based on conditional

probabilities

- 3 tosses of a biased coin:

$$
\mathbf{P}(H)=p, \mathbf{P}(T)=1-p
$$

$\mathbf{P}(T H T)=$
$\mathbf{P}(1$ head $)=$
$\mathbf{P}($ first toss is $\mathrm{H} \mid 1$ head $)=$

Independence of two events

- Defn:

$$
\mathbf{P}(A \cap B)=\mathbf{P}(A) \cdot \mathbf{P}(B)
$$

- Recall $\mathbf{P}(A \cap B)=\mathbf{P}(A) \cdot \mathbf{P}(B \mid A)$
- Independence is same as
$\mathbf{P}(B \mid A)=\mathbf{P}(B)$
and $\mathbf{P}(A \mid B)=\mathbf{P}(A)$

Conditioning may affect independence

- Two unfair coins, A and B :
$\mathbf{P}(H \mid \operatorname{coin} A)=0.9, \mathbf{P}(H \mid \operatorname{coin} B)=0.1$ choose either coin with equal probability

- Once we know it is coin A, are future tosses independent?
- If we do not know which coin it is, are future tosses independent?
- Compare:
$\mathbf{P}($ toss $11=H)$
\mathbf{P} (toss $11=H \mid$ first 10 tosses are heads)

Independence of a collection of events

- Intuitive definition

Information on some of the events tells us nothing about probabilities related to the remaining events

- E.g.,
$\mathbf{P}\left(A_{1} \cap\left(A_{2}^{c} \cup A_{3}\right) \mid A_{5} \cap A_{6}^{c}\right)$
$=\mathbf{P}\left(A_{1} \cap\left(A_{2}^{c} \cup A_{3}\right)\right)$
- Mathematical definition:

For any distinct i, j, \ldots, q,
$\mathbf{P}\left(A_{i} \cap A_{j} \cap \cdots \cap A_{q}\right)=\mathbf{P}\left(A_{i}\right) \mathbf{P}\left(A_{j}\right) \cdots \mathbf{P}\left(A_{q}\right)$

Independence vs. pairwise

 independence- Two independent fair coin tosses
- A: First toss is H
- B : Second toss is H
$-\mathbf{P}(A)=\mathbf{P}(B)=1 / 2$

HH	HT
TH	TT

- C: First and second toss have same outcome
$-\mathbf{P}(C)=$
$-\mathbf{P}(C \cap A)=$
$-\mathbf{P}(A \cap B \cap C)=$
$-\mathbf{P}(C \mid A \cap B)=$
- Pairwise independence does not imply independence

Decoding of noise corrupted messages

- Prior probabilities: $\mathbf{P}(a)=1 / 3, \mathbf{P}(b)=2 / 3$

$$
\sum_{0.2}^{\substack{\text { channel } \\ \text { model }}}<_{0.7}^{0.8} 0<_{0}^{0.3} 0
$$

- Received 0001. What was transmitted?

$$
\mathbf{P}(a \mid 0001)=\frac{\mathbf{P}(a) \mathbf{P}(0001 \mid a)}{\mathbf{P}(a) \mathbf{P}(0001 \mid a)+\mathbf{P}(b) \mathbf{P}(0001 \mid b)}
$$

Radar example from last time

- Event A : Airplane is flying above Event B : Something registers on radar screen

$\mathbf{P}($ airplane \mid register $)=P(A \mid B)$
$=\frac{\mathbf{P}(A) \mathbf{P}(B \mid A)}{\mathbf{P}(B)}$

