LECTURE 5

- Readings: Section 1.6

Lecture outline

- Principles of counting
- Many examples
- Binomial probabilities

Discrete uniform law

- Let all sample points be equally likely
- Then,
$\mathbf{P}(A)=\frac{\text { number of elements of } A}{\text { total number of sample points }}$
- Just count...

Basic counting principle

- r steps
- n_{i} choices at step i

- Number of choices is $n_{1} n_{2} \cdots n_{r}$
- Number of license plates with 3 letters and 4 digits $=$
- ... if repetition is prohibited $=$
- Permutations: Number of ways of ordering n elements is:
- Number of subsets of $\{1, \ldots, n\}=$

Example

- Probability that six rolls of a six-sided die all give different numbers?
- Number of outcomes that make the event happen:
- Number of elements in the sample space:
- Answer:

Combinations

- $\binom{n}{k}$: number of k-element subsets of a given n-element set
- Two ways of constructing an ordered sequence of k distinct items:
- Choose the k items one at a time: $n(n-1) \cdots(n-k+1)=\frac{n!}{(n-k)!}$ choices
- Choose k items, then order them (k ! possible orders)
- Hence:

$$
\binom{n}{k} \cdot k!=\frac{n!}{(n-k)!} \text { so }\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

- Note that

$$
\sum_{k=0}^{n}\binom{n}{k}=
$$

this is a special case of the binomial theorem

$$
\sum_{k=0}^{n}\binom{n}{k} x^{n k} y^{k}=(x+y)^{n}
$$

Binomial probabilities

- n independent coin tosses
$-\mathbf{P}(H)=p$
- $\mathbf{P}(H T T H H H)=$
- $\mathbf{P}($ sequence $)=p^{\#}$ heads $(1-p)^{\# \text { tails }}$

$$
\begin{aligned}
& \mathbf{P}(k \text { heads })=\sum_{k-\text { head seq. }} \mathbf{P}(\text { seq. }) \\
& \quad=(\# \text { of } k \text {-head seqs. }) \cdot p^{k}(1-p)^{n-k} \\
& \quad=\binom{n}{k} p^{k}(1-p)^{n-k}
\end{aligned}
$$

Coin tossing problem

- event B : 3 out of 10 tosses were "heads".
- What is the (conditional) probability that the first 2 tosses were heads, given that B occurred?
- All outcomes in conditioning set B are equally likely:
probability $p^{3}(1-p)^{7}$
- Conditional probability law is uniform
- Number of outcomes in B :
- Out of the outcomes in B, how many start with HH ?

Partitions

- 52-card deck, dealt to 4 players
- Find \mathbf{P} (each gets an ace)
- Count size of the sample space (possible combination of "hands")
$\frac{52!}{13!13!13!13!}$
- Count number of ways of distributing the four aces: 4.3.2
- Count number of ways of dealing the remaining 48 cards

$$
\frac{48!}{12!12!12!12!}
$$

- Answer:

$$
\frac{4 \cdot 3 \cdot 2 \frac{48!}{12!12!12!12!}}{52!}
$$

$13!13!13$! 13 !

