LECTURE 6

- Readings: Sections 2.1-2.3, start 2.4

Lecture outline

- Random variables
- Probability mass function (pmf)
- Service facility example
- Expectation

Random variables

- An assignment of a value (number) to every possible outcome
- Mathematically: A function from the sample space to the real numbers
- discrete or continuous
- Can have several random variables defined on the same sample space
- Notation:
- random variable X
- experimental value x

Probability mass function (pmf)

- ("probability law", "probability distribution")
- Notation:

$$
p_{X}(x)=\mathbf{P}(X=x)
$$

- Example: $X=$ number of coin tosses until first head
- assume independent tosses, $\mathbf{P}(H)=p>0$

$$
\begin{aligned}
p_{X}(k) & =\mathbf{P}(X=k) \\
& =\mathbf{P}(T T \cdots T H) \\
& =(1-p)^{k-1} p, \quad k=1,2, \ldots
\end{aligned}
$$

How to compute a pmf $p_{X}(x)$

- collect all possible outcomes for which X is equal to x
- add their probabilities
- repeat for all x
- Example: Two independent throws of a fair tetrahedral die
F : outcome of first throw
S : outcome of second throw
$L=\min (F, S)$

$p_{L}(2)=$
- X : number of heads in n independent coin tosses
- $\mathbf{P}(H)=p$
- Let $n=4$

$$
\begin{aligned}
p_{X}(2)= & \mathbf{P}(H H T T)+\mathbf{P}(H T H T)+\mathbf{P}(H T T H) \\
& +\mathbf{P}(T H H T)+\mathbf{P}(T H T H)+\mathbf{P}(T T H H) \\
= & 6 p^{2}(1-p)^{2} \\
= & \binom{4}{2} p^{2}(1-p)^{2}
\end{aligned}
$$

In general:

$$
p_{X}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots, n
$$

- n : customers
- p : prob. customer requires service
- s : no. of service persons
- X : no. of service requests (r.v.)

$$
\begin{aligned}
\mathbf{P}(X>s) & =\mathbf{P}(X=s+1)+\cdots+\mathbf{P}(X=n) \\
& =p_{X}(s+1)+\cdots+p_{X}(n) \\
& =\sum_{i=s+1}^{n}\binom{n}{i} p^{i}(1-p)^{n-i}
\end{aligned}
$$

Expectation

- Definition:

$$
\mathbf{E}[X]=\sum_{x} x p_{X}(x)
$$

- Interpretations:
- Center of gravity of pmf
- Average in large number of repetitions of the experiment (to be substantiated later in this course)
- Example: Uniform on $0,1, \ldots, n$

$\mathrm{E}[X]=0 \times \frac{1}{n+1}+1 \times \frac{1}{n+1}+\cdots+n \times \frac{1}{n+1}=$

Properties of expectations

- Let X be a r.v. and let $Y=g(X)$
- Hard: $\mathbf{E}[Y]=\sum_{y} y p_{Y}(y)$
- Easy: $\mathbf{E}[Y]=\sum_{x} g(x) p_{X}(x)$
- "Second moment": $\mathrm{E}\left[X^{2}\right]$
- Caution: In general, $\mathbf{E}[g(X)] \neq g(\mathbf{E}[x])$
- Variance:
$\operatorname{var}(X)=\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]=\sum_{x}(x-\mathbf{E}[X])^{2} p_{X}(x)$
- If α is a constant: $\mathbf{E}[\alpha]=$
- $\mathbf{E}[\alpha X]=$
- $\mathbf{E}[\alpha X+\beta]=$
- How about second moments?
$\mathbf{E}\left[(\alpha X)^{2}\right]=\mathbf{E}\left[\alpha^{2} X^{2}\right]$

