LECTURE 11

- Readings: Section 3.6

More on continuous r.v.s, and derived distributions

Review

$$
\begin{array}{cl}
p_{X}(x) & f_{X}(x) \\
p_{X, Y}(x, y) & f_{X, Y}(x, y) \\
p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)} & f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)} \\
p_{X}(x)=\sum_{y} p_{X, Y}(x, y) & f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y \\
F_{X}(x)=\mathbf{P}(X \leq x)
\end{array}
$$

$$
\mathbf{E}[X], \quad \operatorname{var}(X)
$$

Buffon's needle

- Parallel lines at distance d

Needle of length ℓ (assume $\ell<d$)

- Find \mathbf{P} (needle intersects one of the lines)

- $X \in[0, d / 2]$: distance of needle midpoint to nearest line
- Model: X, Θ uniform, independent
$f_{X, \Theta}(x, \theta)=\quad 0 \leq x \leq d / 2,0 \leq \theta \leq \pi / 2$
- Intersect if $X \leq \frac{\ell}{2} \sin \Theta$

$$
\mathbf{P}\left(X \leq \frac{\ell}{2} \sin \Theta\right)=\frac{4}{\pi d} \int_{0}^{\pi / 2} \frac{\ell}{2} \sin \theta d \theta=\frac{2 \ell}{\pi d}
$$

What is a derived distribution

- It is a pmf or pdf of a function of a random variable with known probability law.
- Obtaining the PDF for

$$
g(X, Y)=Y / X
$$

involves deriving a distribution.
Note: $g(X, Y)$ is a random variable

How to find them

- Discrete case
- Obtain probability mass for each possible value of $Y=g(X)$

$$
\begin{aligned}
p_{Y}(y) & =\mathbf{P}(g(X)=y) \\
& =\sum_{x: g(x)=y} p_{X}(x)
\end{aligned}
$$

- Two-step procedure for the continuous case:
- Get CDF of $Y: \quad F_{Y}(y)=\mathbf{P}(Y \leq y)$
- Differentiate to get

$$
f_{Y}(y)=\frac{d F_{Y}}{d y}(y)
$$

Example

- Joan is driving from Boston to New York. Her speed is uniformly distributed between 30 and 60 mph . What is the distribution of the duration of the trip?
- Let $T(V)=\frac{200}{V}$.
- Find $f_{T}(t)$

Example

- X : uniform on $[0,2]$
- Find PDF of $Y=X^{3}$
- Solution:

$$
\begin{gathered}
F_{Y}(y)=\mathbf{P}(Y \leq y)=\mathbf{P}\left(X^{3} \leq y\right) \\
=\mathbf{P}\left(X \leq y^{1 / 3}\right)=\frac{1}{2} y^{1 / 3} \\
f_{Y}(y)=\frac{d F_{Y}}{d y}(y)=\frac{1}{6 y^{2 / 3}}
\end{gathered}
$$

The pdf of $Y=a X+b$

$$
f_{Y}(y)=\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right)
$$

- Use this to check that if X is normal, then $Y=a X+b$ is also normal.
- General normal $N\left(\mu, \sigma^{2}\right)$:

$$
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

