LECTURE 15

- Readings: Sections 4.3, 4.4

Lecture outline

- Conditional expectation
- Law of iterated expectations
- Law of conditional variances
- Sum of a random number of independent r.v.'s
- mean, variance, transform

Conditional expectations

- Given the value y of a r.v. Y :

$$
\mathrm{E}[X \mid Y=y]=\sum_{x} x p_{X \mid Y}(x \mid y)
$$

(integral in continuous case)

- Stick example: stick of length ℓ break at uniformly chosen point Y break again at uniformly chosen point X
- $\mathrm{E}[X \mid Y=y]=\frac{y}{2}$ (number)
- $\mathrm{E}[X \mid Y]=\frac{Y}{2} \quad$ (r.v.)
- Law of iterated expectations:
$\mathbf{E}[\mathbf{E}[X \mid Y]]=\sum_{y} \mathbf{E}[X \mid Y=y] p_{Y}(y)=\mathbf{E}[X]$
- In stick example:
$\mathrm{E}[X]=\mathrm{E}[\mathrm{E}[X \mid Y]]=\mathrm{E}[Y / 2]=\ell / 4$

Conditional variance

- $\operatorname{Var}(X \mid Y)$: variance of the conditional distribution of X
$\operatorname{var}(X \mid Y=y)=\mathbf{E}\left[(X-\mathbf{E}[X \mid Y=y])^{2} \mid Y=y\right]$
- Interesting formula:
$\operatorname{Var}(X)=\mathrm{E}[\operatorname{Var}(X \mid Y)]+\operatorname{Var}(\mathrm{E}[X \mid Y])$

$$
\begin{aligned}
& \text { Example } \\
& \operatorname{Var}(X)=\mathbf{E}[\operatorname{Var}(X \mid Y)]+\operatorname{Var}(\mathbf{E}[X \mid Y]) \\
& \mathbf{E}[X \mid Y=1]=\quad \mathbf{E}[X \mid Y=2]= \\
& \operatorname{Var}(X \mid Y=1)= \\
& \mathbf{E}[X]= \\
& \operatorname{Var}(X \mid Y=2)= \\
& \operatorname{Var}(X \mid Y])=
\end{aligned}
$$

Sum of a random number of independent r.v.'s

- N : number of stores visited
- X_{i} : money spent in store i
- X_{i} assumed i.i.d.
- independent of N
- Let $Y=X_{1}+\cdots+X_{N}$

$$
\begin{aligned}
\mathrm{E}[Y] & =\mathrm{E}[\mathrm{E}[Y \mid N]] \\
& =\mathrm{E}[N \mathrm{E}[X]] \\
& =\mathrm{E}[N] \mathrm{E}[X]
\end{aligned}
$$

- Variance:

$$
\begin{aligned}
\operatorname{Var}(Y) & =\mathrm{E}[\operatorname{Var}(Y \mid N)]+\operatorname{Var}(\mathrm{E}[Y \mid N]) \\
& =\mathrm{E}[N] \operatorname{var}(X)+(\mathrm{E}[X])^{2} \operatorname{var}(N)
\end{aligned}
$$

Review of transforms

- Definitions:

$$
M_{X}(s)=\mathrm{E}\left[e^{s X}\right]=\left\{\begin{array}{l}
\sum_{x} e^{s x} p_{X}(x) \\
\int_{-\infty}^{\infty} e^{s x} f_{X}(x) d x
\end{array}\right.
$$

- Moment generating properties:

$$
\left.\frac{d^{n}}{d s^{n}} M_{X}(s)\right|_{s=0}=\mathrm{E}\left[X^{n}\right]
$$

- Transform of sum of independent r.v.'s X, Y independent; $W=X+Y$

$$
M_{W}(s)=M_{X}(s) M_{Y}(s)
$$

- Transform of "random sum":

$$
\begin{aligned}
M_{Y}(s) & =\mathbf{E}\left[e^{s Y}\right] \\
& =\mathbf{E}\left[\mathbf{E}\left[e^{s Y} \mid N\right]\right] \\
& =\mathbf{E}\left[\mathbf{E}\left[e^{s\left(X_{1}+\cdots+X_{N}\right)} \mid N\right]\right] \\
& =\mathbf{E}\left[M_{X}(s)^{N}\right]
\end{aligned}
$$

- compare with $M_{N}(s)=\mathrm{E}\left[\left(e^{s}\right)^{N}\right]$
- start with $M_{N}(s)$ and replace occurrences of e^{s} by $M_{X}(s)$

