LECTURE 18

The Poisson process

- Readings: Start Section 5.2.

Lecture outline

- Review of Bernoulli process
- Definition of Poisson process
- Distribution of number of arrivals
- Distribution of interarrival times
- Other properties of the Poisson process

Bernoulli review

- Discrete time; success probability p
- Number of arrivals in n time slots: binomial pmf
- Interarrival time pmf: geometric pmf
- Time to k arrivals: Pascal pmf
- Memorylessness

Definition of the Poisson process

- $P(k, \tau)=$ Prob. of k arrivals in interval of duration τ
- Assumptions:
- Numbers of arrivals in disjoint time intervals are independent
- For VERY small δ :

$$
P(k, \delta) \approx \begin{cases}1-\lambda \delta & \text { if } k=0 \\ \lambda \delta & \text { if } k=1 \\ 0 & \text { if } k>1\end{cases}
$$

$-\lambda=$ "arrival rate"

PMF of Number of Arrivals N

$$
P(k, \tau)=\frac{(\lambda \tau)^{k} e^{-\lambda \tau}}{k!}, \quad k=0,1, \ldots
$$

- $\mathbf{E}[N]=\lambda \tau$
- $\sigma_{N}^{2}=\lambda \tau$
- $M_{N}(s)=e^{\lambda t\left(e^{s}-1\right)}$

Example: You get email according to a Poisson process at a rate of $\lambda=0.4$ messages per hour. You check your email every thirty minutes.

- Prob(no new messages)=
- Prob(one new message)=

Interarrival Times

- Y_{k} time of k th arrival
- Erlang distribution:

$$
f_{Y_{k}}(y)=\frac{\lambda^{k} y^{k-1} e^{-\lambda y}}{(k-1)!}, \quad y \geq 0
$$

- First-order interarrival times $(k=1)$: exponential
$f_{Y_{1}}(y)=\lambda e^{-\lambda y}, \quad y \geq 0$
- Memoryless property: The time to the next arrival is independent of the past

	POISSON	BERNOULLI
Times of Arrival	Continuous	Discrete
Arrival Rate	$\lambda /$ unit time	$p /$ per trial
PMF of \# of Arrivals	Poisson	Binomial
Interarrival Time Distr.	Exponential	Geometric
Time to k-th arrival	Erlang	Pascal

Adding Poisson Processes

- Sum of independent Poisson random variables is Poisson
- Sum of independent Poisson processes is Poisson

- What is the probability that the next arrival comes from the first process?

