LECTURE 19

Poisson process review and examples

- Readings: Finish Section 5.2.
- Review of Poisson process
- Examples
- Random incidence

Poisson catches

- Assume: Poisson, λ = 0.6/hour
 Fish for two hours; if no catch, continue
 until first catch.
- **A.** P(fish for more than two hours)=
- B. P(fish for more than two and less than
 five hours)=
- C. P(catch at least two fish)=
- **D.** E[number of fish]=
- E. E[future fishing time | fished for four hours]=
- **F. E**[total fishing time]=

Review

Numbers of arrivals in disjoint time intervals are independent

$$P(k,\delta) pprox egin{cases} 1 - \lambda \delta & ext{if } k = 0 \ \lambda \delta & ext{if } k = 1 \ 0 & ext{if } k > 1 \end{cases}$$

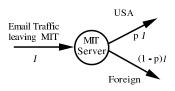
$$P(k,\tau) = \frac{(\lambda \tau)^k e^{-\lambda \tau}}{k!}, \qquad k = 0, 1, \dots$$

$$\mathbf{E}[N] = \lambda \tau$$

• Interarrival times (k = 1): exponential

$$f_{T_1}(t) = \lambda e^{-\lambda t}, \quad t \ge 0, \qquad \mathbf{E}[T_1] = 1/\lambda$$

ullet Time Y_k to kth arrival:


$$f_{Y_k}(y) = \frac{\lambda^k y^{k-1} e^{-\lambda y}}{(k-1)!}, \qquad y \ge 0$$

Light bulb example

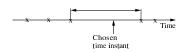
- Each light bulb has independent, exponentially distributed lifetime $\lambda e^{-\lambda t}, \ t \geq 0$
- Install three light bulbs.
 Find expected time until last light bulb dies out

Splitting of Poisson processes

- ullet Each message is routed along the first stream with probability p
- Routings of different messages are independent

• Each output stream is Poisson

Renewal processes


- Series of successive arrivals
- i.i.d. interarrival times
 (but not necessarily exponential)
- Example:

Bus interarrival times are equally likely to be 5 or 10 minutes

- If you arrive at a "random time":
- what is the probability that you selected
 a 5 minute interarrival interval?
- what is the expected time to next arrival?

Random incidence for Poisson

- Poisson process that has been running forever
- Show up at some "random time" ("random incidence")

• What is the distribution of the length of the chosen interarrival interval?