LECTURE 20

Markov Processes - I

• Readings: Sections 6.1–6.2

Lecture outline

- Checkout counter example
- Markov process definition
- *n*-step transition probabilities
- Classification of states

Checkout counter model

- Discrete time $n = 0, 1, \ldots$
- Customer arrivals: Bernoulli(*p*)
- geometric interarrival times
- Customer service times: geometric(q)
- "State" X_n : number of customers at time n

Finite State Markov models

- X_n : state after *n* transitions
- belongs to a finite set, e.g., $\{1, \ldots, m\}$
- X_0 is either given or random
- Markov property/assumption: (given current state, the past does not matter)

$$p_{ij} = P(X_{n+1} = j | X_n = i)$$

= $P(X_{n+1} = j | X_n = i, X_{n-1}, \dots, X_0)$

- Modeling steps:
- identify the possible states
- mark the possible transitions
- record the transition probabilities

n-step transition probabilities

• State occupancy probabilities, given initial state i:

 $r_{ij}(n) = \mathbf{P}(X_n = j \mid X_0 = i)$

Key recursion: _

$$r_{ij}(n) = \sum_{k=1}^{m} r_{ik}(n-1)p_{kj}$$

- With random initial state:

$$P(X_n = j) = \sum_{i=1}^{m} P(X_0 = i)r_{ij}(n)$$

Example

Generic question:

• Does r_{ij} converge to something?

• Does the limit depend on initial state?

(1)

 $r_{11}(n) =$

 $r_{31}(n) =$

 $r_{21}(n) =$

Recurrent and transient states

- State *i* is **recurrent** if: starting from *i*, and from wherever you can go, there is a way of returning to *i*
- If not recurrent, called **transient**

- i transient: $\mathbf{P}(X_n=i) \rightarrow 0,$ i visited finite number of times
- Recurrent class: collection of recurrent states that "communicate" to each other and to no other state

Periodic states

 A recurrent state is **periodic** if: there is an integer d > 1 such that p_{ii}(k) = 0 when k is not an integer multiple of d

• Then, $p_{ii}(n)$ cannot converge.