
LECTURE 20 

Markov Processes – I 

• Readings: Sections 6.1–6.2 

Lecture outline 

• Checkout counter example 

• Markov process definition 

• n-step transition probabilities 

• Classification of states 

Checkout counter model 

• Discrete time n = 0, 1, . . . 

• Customer arrivals: Bernoulli(p) 

– geometric interarrival times 

• Customer service times: geometric(q) 

• “State” Xn: number of customers at 

time n 
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Finite State Markov models 

• Xn: state after n transitions 

– belongs to a finite set, e.g., {1, . . . , m} 

– X0 is either given or random 

• Markov property/assumption: 

(given current state, the past does not 

matter) 

pij = P(Xn+1 = j | Xn = i) 

= P(Xn+1 = j | Xn = i, Xn−1, . . . , X0) 

• Modeling steps: 

– identify the possible states 

– mark the possible transitions 

– record the transition probabilities 

n-step transition probabilities 

• State occupancy probabilities, 
given initial state i: 

rij (n) = P(Xn = j | X0 = i) 
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– Key recursion: 

rij(n) = 
m � 

k=1 

rik(n − 1)pkj 

– With random initial state: 

P(Xn = j) = 
m � 

i=1 
P(X0 = i)rij (n) 

Example 
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Generic question: 

• Does rij converge to something? 
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r2 2(n)= n odd: r2 2(n)= n even: 

• Does the limit depend on initial state? 
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Recurrent and transient states 

• State i is recurrent if: 
starting from i, 
and from wherever you can go, 
there is a way of returning to i 

• If not recurrent, called transient 
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– i transient: 
P(Xn = i) → 0, 
i visited finite number of times 

• Recurrent class: 
collection of recurrent states that 
“communicate” to each other 
and to no other state 

Periodic states 

• A recurrent state is periodic if: 

there is an integer d > 1 

such that pii(k) = 0 

when k is not an integer multiple of d 
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• Then, pii(n) cannot converge. 


