LECTURE 20

Markov Processes - I

- Readings: Sections 6.1-6.2

Lecture outline

- Checkout counter example
- Markov process definition
- n-step transition probabilities
- Classification of states

Checkout counter model

- Discrete time $n=0,1, \ldots$
- Customer arrivals: Bernoulli (p)
- geometric interarrival times
- Customer service times: geometric (q)
- "State" X_{n} : number of customers at time n

n-step transition probabilities

- State occupancy probabilities, given initial state i :

$$
r_{i j}(n)=\mathbf{P}\left(X_{n}=j \mid X_{0}=i\right)
$$

Time $0 \quad$ Time $\mathrm{n}-1 \quad$ Time n

- Key recursion:

$$
r_{i j}(n)=\sum_{k=1}^{m} r_{i k}(n-1) p_{k j}
$$

- With random initial state:

$$
\mathbf{P}\left(X_{n}=j\right)=\sum_{i=1}^{m} \mathbf{P}\left(X_{0}=i\right) r_{i j}(n)
$$

- X_{n} : state after n transitions
- belongs to a finite set, e.g., $\{1, \ldots, m\}$
- X_{0} is either given or random
- Markov property/assumption:
(given current state, the past does not matter)

$$
\begin{aligned}
p_{i j} & =\mathbf{P}\left(X_{n+1}=j \mid X_{n}=i\right) \\
& =\mathbf{P}\left(X_{n+1}=j \mid X_{n}=i, X_{n-1}, \ldots, X_{0}\right)
\end{aligned}
$$

- Modeling steps:
- identify the possible states
- mark the possible transitions
- record the transition probabilities

Generic question:

- Does $r_{i j}$ converge to something?

n odd: $\mathrm{r}_{22}(\mathrm{n})=\quad \mathrm{n}$ even: $\mathrm{r}_{2}(\mathrm{n})=$
- Does the limit depend on initial state?

$r_{11}(n)=$
r31(n)=
$r_{21}(n)=$

Recurrent and transient states

- State i is recurrent if:
starting from i,
and from wherever you can go, there is a way of returning to i
- If not recurrent, called transient

$-i$ transient:
$\mathbf{P}\left(X_{n}=i\right) \rightarrow 0$,
i visited finite number of times
- Recurrent class
collection of recurrent states that "communicate" to each other and to no other state
- A recurrent state is periodic if: there is an integer $d>1$ such that $p_{i i}(k)=0$
when k is not an integer multiple of d

- Then, $p_{i i}(n)$ cannot converge.

