LECTURE 21

Markov Processes – II

• Readings: Section 6.3

Lecture outline

- Markov process review
- Steady-State Behavior
- Birth-death processes

Review

- Discrete state, discrete time
- Transition probabilities p_{ij}
- Markov property

• $r_{ij}(n) = P[X_n = j \mid X_0 = i]$

- Key recursion: $r_{ij}(n) = \sum_{k} r_{ik}(n-1)p_{kj}$
- Underlying assumption: change according to relative rather than absolute time
 time-homogeneous

Recurrent and transient states

- State *i* is recurrent if: starting from *i*, and from wherever you can go, there is a way of returning to *i*
- If not recurrent, called **transient**
- Recurrent class: collection of recurrent states that "communicate" to each other and to no other state

$$P(X_1 = 2, X_2 = 6, X_3 = 7 | X_0 = 1) =$$

$$P(X_4 = 7 | X_0 = 2) =$$

Periodic states

 A recurrent state is **periodic** if: there is an integer d > 1 such that p_{ii}(k) = 0 when k is not an integer multiple of d

Steady-State Probabilities

- Do the r_{ij}(n) converge to some π_j? (independent of the initial state i)
- Yes, if:
- recurrent states are all in a single class, and
- no periodicity
- Start from key recursion

$$r_{ij}(n) = \sum_k r_{ik}(n-1)p_{kj}$$

– take the limit as $n \to \infty$

$$\pi_j = \sum_k \pi_k p_{kj}$$

- Additional equation:

$$\sum_{j} \pi_{j} =$$

1

Visit frequency interpretation

$$\pi_j = \sum_k \pi_k p_{kj}$$

- (Long run) frequency of being in j: π_j
- Frequency of transitions $k \rightarrow j$: $\pi_k p_{kj}$
- Frequency of transitions into j: $\sum_k \pi_k p_{kj}$

Example

Birth-death processes

 $\mathsf{p}_i = \pi_{i+1}q_{i+1}$

• Special case: $p_i = p$ and $q_i = q$ for all i $\rho = p/q = load$ factor

$$\pi_{i+1} = \pi_i \frac{p}{q} = \pi_i \rho$$

$$\pi_i = \pi_0 \rho^i, \qquad i = 0, 1, \dots, m$$

• Assume p < q and $m \approx \infty$

 $\pi_0 = 1 - \rho$

$$\mathbf{E}[X_n] = \frac{\rho}{1-\rho} \qquad \text{(in steady-state)}$$