LECTURE 25

Outline

- Approximating binomial distributions
- Strong law of large numbers

CLT review

- X_{i} : i.i.d., finite variance σ^{2}
- $S_{n}=X_{1}+\cdots+X_{n}$
- $Z_{n}=\frac{\left(X_{1}+\cdots+X_{n}\right)-n \mathbf{E}[X]}{\sigma \sqrt{n}}$
- Z: standard normal (zero mean, unit variance)
- CLT: $\mathbf{P}\left(Z_{n} \leq c\right) \rightarrow \mathbf{P}(Z \leq c)=\Phi(c)$
- Approximation: treat S_{n} as if normal

Apply to binomial

- Fix p, where $0<p<1$
- X_{i} : Bernoulli (p)
- $S_{n}=X_{1}+\cdots+X_{n}$: $\operatorname{Binomial}(n, p)$
- mean $n p$, variance $n p(1-p)$
- $\frac{S_{n}-n p}{\sqrt{n p(1-p)}} \longrightarrow$ standard normal CDF

Example

- $n=36, p=0.5 ;$ find $\mathbf{P}\left(S_{n} \leq 21\right)$
- Exact answer:

$$
\sum_{k=0}^{21}\binom{36}{k}\left(\frac{1}{2}\right)^{36}=0.8785
$$

The $1 / 2$ correction for binomial approximation

- $\mathbf{P}\left(S_{n} \leq 21\right)=\mathbf{P}\left(S_{n}<22\right)$, because S_{n} is integer
- Compromise: consider $\mathbf{P}\left(S_{n} \leq 21.5\right)$

De Moivre-Laplace CLT (for binomial)

- When the $1 / 2$ correction is used, CLT can also approximate the binomial p.m.f. (not just the binomial CDF)

$$
\mathbf{P}\left(S_{n}=19\right)=\mathbf{P}\left(18.5 \leq S_{n} \leq 19.5\right)
$$

$$
18.5 \leq S_{n} \leq 19.5 \Longleftrightarrow
$$

$$
\frac{18.5-18}{3} \leq \frac{S_{n}-18}{3} \leq \frac{19.5-18}{3} \Longleftrightarrow
$$

$$
0.17 \leq Z_{n} \leq 0.5
$$

$$
\mathbf{P}\left(S_{n}=19\right) \approx \mathbf{P}(0.17 \leq Z \leq 0.5)
$$

$$
=\mathbf{P}(Z \leq 0.5)-\mathbf{P}(Z \leq 0.17)
$$

$$
=0.6915-0.5675
$$

$$
=0.124
$$

- Exact answer:

$$
\binom{36}{19}\left(\frac{1}{2}\right)^{36}=0.1251
$$

Poisson vs. normal approximations of the binomial

- Poisson arrivals during unit interval equals: sum of n (independent) Poisson arrivals during n intervals of length $1 / n$
- Let $n \rightarrow \infty$, apply CLT (??)
- Poisson=normal (????)
- Binomial (n, p)
- p fixed, $n \rightarrow \infty$: normal
- $n p$ fixed, $n \rightarrow \infty, p \rightarrow 0$: Poisson
- $p=1 / 100, n=100:$ Poisson
- $p=1 / 10, n=500:$ normal

The strong law of large numbers

- Theorem: (SLLN) If X_{i} are i.i.d., and $\mathrm{E}[|X|]<\infty$, then

$$
M_{n}=\frac{X_{1}+\cdots+X_{n}}{n} \rightarrow \mathbf{E}[X]
$$

with probability 1.

- One experiment: Generate an infinite sequence X_{1}, X_{2}, \ldots and the associated infinite sequence M_{1}, M_{2}, \ldots.
- Sample space: set of all infinite sequences
- Sequences that do not converge to $\mathrm{E}[X]$ are also possible, but collectively their probability is zero
- Example: X_{i} are $\operatorname{Bernoulli}(p)$
$M_{n}=$ fraction of successes in n trials $M_{n} \rightarrow p$, with probability 1

Convergence with probability one

- Let one experiment generate an infinite sequence of experimental values of Y_{1}, Y_{2}, \ldots
- sample space: set of all sequences
- Def: $Y_{n} \rightarrow c$, with probability 1 , if the set of all sequences that converge to c has probability 1 .
- It turns out that convergence w.p. 1 always implies convergence in probability
- converse is not always true
- Example: let $Y_{n}=1$ if customer arrives at time slot n
Model of customer arrivals: during each interval $2^{k}, \ldots 2^{k+1}-1$, exactly 1 customer arrives, each slot being equally likely
Check that $Y_{n} \rightarrow 0$ in probability, but not with probability 1

