

What types of questions may we be interested in () posing?

- What is the average number of users in the system? What is the average delay?
- What is the probability a request will find a busy server?
- What is the delay for serving my request? Should I upgrade to a more powerful server or buy more servers?
- What is the probability that a packet is dropped because of buffer overflow? How big do I need to make my buffer to maintain the probability of dropping a packet below some threshold? What is the probability that I cannot accommodate a call request (blocking probability)?
- For networked servers, how does the number of requests queued at each server behave?
- We shall keep these types of questions in mind as we go forward
—— MIT

- Processing delay: for instance time from packet reception to assignment to a queue (generally constant)
- Queueing delay: time in queue up to time of transmission
- Transmission delay: actual transmission time (for instance proportional to packet length)
- Propagation delay: time required for the last bit to go from transmitter to receiver (generally proportional to the physical link distance, large for satellite link) [Not to confuse with latency, which is number of bits in flight, latency goes up with data rate]

- When do queues appear?
- Systems in which some serving entities provide some service in a shared fashion to some other entities requiring service
- Examples
- customers at an ATM, a fast food restaurant
- Routers: packets are held in buffers for routing
- Requests for service from a server or several servers
- Call requests in a circuit-oriented system such as traditional telephony, mobile networks or high-speed optical connections

五

Analysis versus simulation

- Why can't I just simulate it?
- Analysis and simulation are complementary, not opposed
- It is generally impossible to simulate a whole system- we need to be able to determine the main components of the system and understand the basis for their interaction
- What are the important parameters? What is their effect?
- In many systems simulation is required to qualify the results from analysis, to obtain results that are too complex computationally
— MIT

Main parameters of a queueing system

- $\mathrm{N}(\mathrm{t})$: number of customers in the system at time t
- $\mathrm{P}(\mathrm{N}(\mathrm{t})=\mathrm{n})=$ probability there are n customers in the system at time t
- Steady state probability:

$$
\mathrm{P}_{\mathrm{n}}=\lim _{\mathrm{t} \rightarrow \infty} \mathrm{P}(\mathrm{~N}(\mathrm{t})=\mathrm{n})
$$

- Mean number in system at time t :

$$
\overline{\mathrm{N}(\mathrm{t})}=\sum_{\mathrm{n}=0}^{\infty} \mathrm{n} \mathrm{P}(\mathrm{~N}(\mathrm{t})=\mathrm{n})
$$

- Time average number in the system:

$$
N_{t}=\frac{1}{t} \int_{t=0}^{\infty} N(t)
$$

- We assume the system is ERGODIC:

$$
\lim _{t \rightarrow \infty} N_{t}=\lim _{t \rightarrow \infty} \overline{N(t)}=N
$$

——— MIT

Little's theorem

- We have:

$\lambda \mathrm{T}=\mathrm{N}$

- Little's theorem applies to any arrival-departure system with appropriate interpretation of average number of customers in the system, average arrival rate and average customer time in system
- Answers to some extent our first question

－Single server
－Poisson arrival process with rate λ
－Independent identically distributed（IID）service times $X(n)$ for the service time of user n
－Service times X are exponentially distributed with parameter μ ，so $\mathrm{P}(\mathrm{X}(\mathrm{n}) \leq \mathrm{s})=1-e^{-\mu \mathrm{s}} \quad$ and $\mathrm{E}[\mathrm{X}]=1 / \mu$
－Interarrival times and service times are independent
－We define $\rho=\lambda / \mu$ ，we shall see later how that relates to the ρ we considered when discussing Little＇s theorem
－Can we make use of the very special properties of Poisson processes to describe probabilistically the behavior of the system？

——— MIT

－In steady state，across some cut between two states，the proportion number of transitions from left to right must be the same as the proportion of transitions from right to left

－Local balance equations

$$
\mathrm{P}(\mathrm{~N}=\mathrm{n}) \lambda \delta+\mathrm{o}(\delta)=\mathrm{P}(\mathrm{~N}=\mathrm{n}+1) \mu \delta+\mathrm{o}(\delta)
$$

dividing by δ and taking the limit as $\delta \rightarrow 0$ $\mathrm{P}(\mathrm{N}=\mathrm{n}+1)=\rho \mathrm{P}(\mathrm{N}=\mathrm{n})$
—— MIT

－We can now make use of Little＇s theorem to answer our first set of questions：

$$
\mathrm{P}(\mathrm{~N}=\mathrm{n}+1)=\mathrm{P}(\mathrm{~N}=0) \rho^{\mathrm{n}+1}
$$

$\overline{\mathrm{N}}=\sum_{\mathrm{n}=0}^{\infty} \mathrm{nP}(\mathrm{N}=\mathrm{n})=\sum_{\mathrm{n}=0}^{\infty} \mathrm{n}(1-\rho) \rho^{\mathrm{n}+1}=\frac{\rho}{1-\rho}$
so $\mathrm{T}=\frac{\overline{\mathrm{N}}}{\rho}=\frac{\frac{\lambda}{\mu}}{\lambda\left(1-\frac{\lambda}{\mu}\right)}$
－What is the wait in queue， W ？Use independence of service times to get $\mathrm{W}=\mathrm{T}-1 / \mu$
－we use the fact that Poisson arrivals see time average（PASTA）
－the probability of having a random customer wait is ρ
——— MIT
IT

$$
\begin{aligned}
& 1=\sum_{\mathrm{n}=0}^{\infty} \mathrm{P}(\mathrm{~N}=0) \rho^{\mathrm{n}+1} \\
& \text { so } \mathrm{P}(\mathrm{~N}=0)=1-\rho
\end{aligned}
$$

－We have
－Let us answer the second question：

More queue Scenarios

－A similar type of analysis holds for other queue scenarios：
－set up a Markov chain
－determine balance equations
－use the fact that all probabilities sum to 1
－derive everything else from there
－ $\mathrm{M} / \mathrm{M} / \mathrm{m}$ queue：Poisson arrivals，exponential distribution of service time，m servers
－Similar analysis to before，except now the probability of a departure is proportional to the number of servers in use， because a departure occurs if AT LEAST one of the servers has a departure
－Now $\rho=m \mu$
\qquad MIT \qquad

＿＿MIT

- Second question, what is the probability that a customer must wait in queue: Erlang C formula

$$
\mathrm{P}_{\mathrm{Q}}=\sum_{\mathrm{n}=\mathrm{m}}^{\infty} \mathrm{P}(\mathrm{~N}=\mathrm{n})=\frac{\mathrm{P}(\mathrm{~N}=0) \mathrm{m}^{\mathrm{m}} \rho^{\mathrm{m}}}{(1-\rho) \mathrm{m}!}
$$

- Applying Little's theorem:

$$
\begin{aligned}
& \mathrm{W}=\frac{\rho \mathrm{P}_{\mathrm{Q}}}{(1-\rho) \lambda} \\
& \mathrm{T}=\frac{1}{\mu}+\mathrm{W} \\
& \overline{\mathrm{~N}}=\lambda \mathrm{T}
\end{aligned}
$$

—— MIT

- Infinite number of servers
- Taking m to go to ∞ in the $\mathrm{M} / \mathrm{M} / \mathrm{m}$ system, we have that the occupancy distribution is Poisson with parameter λ / μ

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~N}=\mathrm{n})=\frac{\left(\frac{\lambda}{\mu}\right)^{\mathrm{n}} e^{-\frac{\lambda}{\mu}}}{\mathrm{n}!} \\
& \overline{\mathrm{N}}=\frac{\lambda}{\mu}
\end{aligned}
$$

- $\mathrm{T}=1 / \mu$
——— MIT

- Closed form solutions are difficult to obtain
- Poisson with feedback does not remain Poisson

One server or many?

- We now have the tools to answer our third question: would I rather have a single more powerful server or many weaker servers?
- Would we rather have a single server with service rate $\mathrm{m} \mu$ or m servers with service rate μ ?

- Upper bound on the queue size

$\mathrm{P}(\mathrm{N}=\mathrm{n}-1)=\mathrm{n} \mu \mathrm{P}(\mathrm{N}=\mathrm{n})$ for $\mathrm{n} \leq \mathrm{m}$
so $\mathrm{P}(\mathrm{N}=\mathrm{n})=\mathrm{P}(\mathrm{N}=0) \frac{\left(\frac{\lambda}{\mu}\right)^{\mathrm{n}}}{\mathrm{m}!}$ for $\mathrm{n} \leq \mathrm{m}$ where $\mathrm{P}(\mathrm{N}=0)=\left[\sum_{\mathrm{n}=0}^{\mathrm{m}-1} \frac{\left(\frac{\lambda}{\mu}\right)^{\mathrm{n}}}{\mathrm{n}!}\right]$
- The answer to our third question is, using PASTA, the probability $\mathrm{P}(\mathrm{N}=\mathrm{m})$
—— MIT \qquad

- Assume all queues behave like $\mathrm{M} / \mathrm{M} / 1$ with arrival rate $\lambda(\mathrm{i}, \mathrm{j})$, service rate $\mu(\mathrm{i}, \mathrm{j})$, and service/propagation delay $\mathrm{d}(\mathrm{i}, \mathrm{j})$
- Then

$$
N_{i, j}=\frac{\lambda_{i, j}}{\mu_{i, j}-\lambda_{i, j}}+\lambda_{i, j} d_{i, j}
$$

average number of packets in the whole network

$$
N=\sum_{i, j} N_{i, j}
$$

average time in the system (using Little's theorem)
$\mathrm{T}=\frac{\mathrm{N}}{\sum_{\mathrm{p}} \lambda_{\mathrm{p}}}$

MIT
(20) How good is it?

- Good to guide topology design before involving simulation, other applications where a rough estimate is needed
- Are there any networks of queues where we can establish analytical results?
- Assuming that:
- arrival processes from outside the network are Poisson
- at each queue, streams have the same exponential service time distribution and a single server
- interarrival times and service times are independen
- Then:
- the steady state occupancy probabilities in each queue are the same as if the queue were $\mathrm{M} / \mathrm{M} / 1$ in isolation

MIT

