

- For networked servers, how does the number of requests queued at each server behave?
- We shall keep these types of questions in mind as we go forward
 MIT

- We define $\rho=\lambda$ /µ, we shall see later how that relates to the ρ we considered when discussing Little's theorem
- Can we make use of the very special properties of Poisson processes to describe probabilistically the behavior of the system?

— MIT

Kleinrock independence assumption
• Assume all queues behave like M/M/1 with arrival rate
$$\lambda(i,j)$$
,
service rate $\mu(i,j)$, and service/propagation delay $d(i,j)$
• Then
 $N_{i,j} = \frac{\lambda_{i,j}}{\mu_{i,j} - \lambda_{i,j}} + \lambda_{i,j} d_{i,j}$
average number of packets in the whole network
 $N = \sum_{i,j} N_{i,j}$
average time in the system (using Little's theorem)
 $T = \frac{N}{\sum_{p} \lambda_{p}}$

міт -

