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Fun queues for 6.041
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The importance of queues

• When do queues appear?
– Systems in which some serving entities provide some service in a

shared fashion to some other entities requiring service
• Examples

– customers at an ATM, a fast food restaurant
– Routers: packets are held in buffers for routing
– Requests for service from a server or several servers
– Call requests in a circuit-oriented system such as traditional 

telephony, mobile networks or high-speed optical connections
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What types of questions may we be interested in 
posing?

• What is the average number of users in the system? What is the 
average delay?

• What is the probability a request will find a busy server?
• What is the delay for serving my request? Should I upgrade to a 

more powerful server or buy more servers?
• What is the probability that a packet is dropped because of 

buffer overflow? How big do I need to make my buffer to 
maintain the probability of dropping a packet below some 
threshold? What is the probability that I cannot accommodate a 
call request (blocking probability)?

• For networked servers, how does the number of requests queued 
at each server behave?

• We shall keep these types of questions in mind as we go forward
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Analysis versus simulation

• Why can’t I just simulate it?
• Analysis and simulation are complementary, not opposed
• It is generally impossible to simulate a whole system- we 

need to be able to determine the main components of the 
system and understand the basis for their interaction

• What are the important parameters? What is their effect? 
• In many systems simulation is required to qualify the results 

from analysis, to obtain results that are too complex 
computationally
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Delay components 

• Processing delay: for instance time from packet reception to 
assignment to a queue (generally constant)

• Queueing delay: time in queue up to time of transmission
• Transmission delay: actual transmission time (for instance 

proportional to packet length)
• Propagation delay: time required for the last bit to go from 

transmitter to receiver (generally proportional  to the physical
link distance, large for satellite link) [Not to confuse with 
latency, which is number of bits in flight, latency goes up 
with data rate] queueing

processing

transmission
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Little’s theorem

• Rather than refer to packets, calls, requests, etc… we refer to 
customers

• Relates delay, average number of customers in queue and 
arrival rate (λ)

• Little’s Theorem: average number of customers = λ x average 
delay

• Holds under very general assumptions
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Main parameters of a queueing system

• N(t): number of customers in the system at time t
• P(N(t) = n) = probability there are n customers in the system 

at time t
• Steady state probability:

• Mean number in system at time t:

• Time average number in the system:

• We assume the system is ERGODIC: 
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Main parameters

• We looked at the system from the point of view if the customers in 
it, let us now consider the delay of those customers

• T(k): delay of customer k
• α(t): number of customer arrivals up to time t
• β(t): number of customer arrivals up to time t 
• Our ergodicity assumption implies that the long-term arrival rate is 

the long-term departure rate:

• Our ergodicity assumption implies that there exists a limit: 
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Little’s theorem

• We have:

• Little’s theorem applies to any arrival-departure system with 
appropriate interpretation of average number of customers in the
system, average arrival rate and average customer time in system

• Answers to some extent our first question 

N  T =λ
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Justification of Little’s theorem
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Note: a similar picture holds even if we do not have FIFO
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Justification of Little’s theorem

• Taking the average over time:
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Goes to T in the limit as t → ∞

Goes to λ in the limit as t → ∞
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M/M/1 system

• Poisson process A(t) with rate λ is a probabilistic arrival 
process such that:
– number of arrivals in disjoint intervals are independent
– number of arrivals in any interval of length τ has Poisson 

distribution with parameter λτ: 

Memoryless arrival

Memoryless service time

Single server
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M/M/1

• Single server 
• Poisson arrival process with rate λ
• Independent identically distributed (IID) service times X(n) for the 

service time of user n
• Service times X are exponentially distributed with parameter µ, so    

and E[X] = 1/µ
• Interarrival times and service times are independent
• We define ρ = λ /µ, we shall see later how that relates to the ρ we 

considered when discussing Little’s theorem
• Can we make use of the very special properties of Poisson 

processes to describe probabilistically the behavior of the system?

s - 1  s)  P(X(n) µ−=≤ e
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Markov chain for M/M/1

• In steady state, across some cut between two states, the 
proportion number of transitions from left to right must be 
the same as the proportion of transitions from right to left

• Local balance equations
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Balance equations

• We know that

• Let us use this fact to determine all the other probabilities

• We have 

• Let us answer the second question:
– we use the fact that Poisson arrivals see time average (PASTA)
– the probability of having a random customer wait is ρ
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Mean values

• We can now make use of Little’s theorem to answer our first 
set of questions:

• What is the wait in queue, W? Use independence of service 
times to get W = T - 1/µ
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More queue Scenarios

• A similar type of analysis holds for other queue scenarios:
– set up a Markov chain
– determine balance equations
– use the fact that all probabilities sum to 1
– derive everything else from there 

• M/M/m queue: Poisson arrivals, exponential distribution of 
service time, m servers

• Similar analysis to before, except now the probability of a 
departure is proportional to the number of servers in use, 
because a departure occurs if AT LEAST one of the servers 
has a departure 

• Now ρ = mµ
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Markov chain for M/M/m
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Let us answer our first two questions

• Second question, what is the probability that a customer must 
wait in queue:Erlang C formula

• Applying Little’s theorem:
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One server or many?

• We now have the tools to answer our third question: would I rather 
have a single more powerful server or many weaker servers?

• Would we rather have a single server with service rate mµ or m 
servers with service rate µ?
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M/M/∞

• Infinite number of servers
• Taking m to go to ∞ in the M/M/m system, we have that the 

occupancy distribution is Poisson with parameter λ/µ

• T = 1/ µ
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M/M/m/m

• Upper bound on the queue size

• The answer to our third question is, using PASTA, the 
probability P(N=m)
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Networks of queues

• Closed form solutions are difficult to obtain
• Poisson with feedback does not remain Poisson

λ

Poisson Poisson Poisson

λ

Poisson

NOT POISSON
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Network of queues

• Several streams, each on a path p, each with rate λ(p)
• Let us look at directed link (i,j):
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Kleinrock independence assumption

• Assume all queues behave like M/M/1 with arrival rate λ(i,j), 
service rate µ(i,j), and service/propagation delay d(i,j)

• Then 
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How good is it?

• Good for densely connected networks and moderate to heavy loads
• Good to guide topology design before involving simulation, other

applications where a rough estimate is needed
• Are there any networks of queues where we can establish 

analytical results?
• Assuming that:

– arrival processes from outside the network are Poisson
– at each queue, streams have the same exponential service time distribution and a 

single server
– interarrival times and service times are independent

• Then:
– the steady state occupancy probabilities in each queue are the 

same as if the queue were M/M/1 in isolation
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