Fun queues for 6.041
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The importance of queues ':_ _

* When do queues appear?
— Systems in which some serving entities provide some service in a
shared fashion to some other entities requiring service

* Examples
— customers at an ATM, a fast food restaurant
— Routers: packets are held in buffers for routing
— Requests for service from a server or several servers

— Call requests in a circuit-oriented system such as traditional
telephony, mobile networks or high-speed optical connections
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What types of questions may we be mterested 1n
posing? ':_ _

What is the average number of users in the system? What is the

average delay?

What is the probability a request will find a busy server?

What is the delay for serving my request? Should I upgrade to a

more powerful server or buy more servers?

What is the probability that a packet is dropped because of

buffer overflow? How big do I need to make my buffer to

maintain the probability of dropping a packet below some

threshold? What is the probability that I cannot accommodate a

call request (blocking probability)?

For networked servers, how does the number of requests queued

at each server behave?

We shall keep these types of questions in mind as we go forward
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Analysis versus simulation i by

* Why can’t I just simulate it?

* Analysis and simulation are complementary, not opposed

It is generally impossible to simulate a whole system- we
need to be able to determine the main components of the
system and understand the basis for their interaction

* What are the important parameters? What is their effect?

* In many systems simulation is required to qualify the results
from analysis, to obtain results that are too complex
computationally

— MIT
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Delay components : B
e

Processing delay: for instance time from packet reception to
assignment to a queue (generally constant)

Queueing delay: time in queue up to time of transmission
Transmission delay: actual transmission time (for instance
proportional to packet length)

Propagation delay: time required for the last bit to go from
transmitter to receiver (generally proportional to the physical
link distance, large for satellite link) [Not to confuse with
latency, which is number of bits in flight, latency goes up
with data rate]
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Little’s theorem

"L
« Rather than refer to packets, calls, requests, etc... we refer to
customers

* Relates delay, average number of customers in queue and
arrival rate (1)

« Little’s Theorem: average number of customers = A x average
delay

« Holds under very general assumptions
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Main parameters of a queueing system ':_ :
"L

« N(t): number of customers in the system at time t
* P(N(t) = n) = probability there are n customers in the system
at time t
 Steady state probability:
P, =lim,_, ,P(N(t)=n)
* Mean number in system at time t: .
N(t)= ZnP(N(t) =n)
« Time average number in the system: 0 .
Ne=- IN(@®
t =0

Main parameters ':

3
* We looked at the system from the point of view if the customers in
it, let us now consider the delay of those customers

* T(k): delay of customer k
* o(t): number of customer arrivals up to time t
*  B(t): number of customer arrivals up to time t
* Our ergodicity assumption implies that the long-term arrival rate is
the long-term departure rate:
a® 5O
t

A=lim_,, —=lim_,,
t

* Our ergodicity assumption implies that there exists a limit:
a(t)

¢ We assume the system is ERGODIC: > T(k)
. . X7y 1 k=]
lim_,, N =lim_,,, N(t) =N T=lim_,, W
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Little’s theorem ":_ _ Justification of Little’s theorem ":_ _
L : i !
« We have: a(t)and B(t) T(fD
a(t) T4

AT =N

« Little’s theorem applies to any arrival-departure system with
appropriate interpretation of average number of customers in the
system, average arrival rate and average customer time in system

« Answers to some extent our first question
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T@3)
A(t)

A0 : a0 "
> T(k) < shaded area = [N(t) dt < > T(k)
k=1 0 k=1

Note: a similar picture holds even if we do not have FIFO
— MIT

Justification of Little’s theorem ' b

« Taking the average over time:

BOAITR) 1o a®dTR)
T kzl L) ST(I)N(t) di< T kZ:I a(t)

Goes to T in the limit as t & o

Goes to A in the limit as t —
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M/I\I/I/ | system -

Memoryless arrival Single server

‘ Memoryless service time

» Poisson process A(t) with rate A is a probabilistic arrival
process such that:
— number of arrivals in disjoint intervals are independent
— number of arrivals in any interval of length t has Poisson
distribution with parameter At: (o)

PA(t+7)-A(t)=n)=e*7LL
n!
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M/M/1 ': _ Markov chain for M/M/1 ': _
43 43
« Single server * In steady state, across some cut between two states, the
« Poisson arrival process with rate A proportion number of transitions from left to right must be
« Independent identically distributed (IID) service times X(n) for the the same as the proportion of transitions from right toi left
ssem_ce Tme Oi(“ser R el disteibuted with . w A WA A g
 Service times X are exponentially distributed with parameter p, so ; —
P(X(n)<s)=1-¢ and E[X]=1/pn 0-0.0 @ Q@
« Interarrival times and service times are independent ud ud s ud us  ud ud
* We define p = A /pu, we shall see later how that relates to the p we . :
. ; . S, * Local balance equations
considered when discussing Little’s theorem X §
« Can we make use of the very special properties of Poisson P(N : 0)A8+0(d) = ?(N = n.+ 1-);15 +0(5)
processes to describe probabilistically the behavior of the system? dividing by & and taking the limitas 6 — 0
PN=n+1)=pP(N=n)
MIT MIT
Balance equations ': _ Mean values ': _
Ly Ly

We know that > P(N=n)=1
n=0

.

Let us use this fact to determine all the other probabilities
P(N=n+1)=P(N =0)p""!

We have 1= ZOP(N =0)p"*!
=
soP(N=0)=1-p

.

Let us answer the second question:
— we use the fact that Poisson arrivals see time average (PASTA)
— the probability of having a random customer wait is p
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* We can now make use of Little’s theorem to answer our first
set of questions:

N=% nP(N=n)= S n(l—p)p“”:i
n=0 n=0 1-p

A

)]

@

* What is the wait in queue, W? Use independence of service
times to get W=T - 1/p

soT =

> |z

— MIT

More queue Scenarios b

A similar type of analysis holds for other queue scenarios:
— set up a Markov chain
— determine balance equations
— use the fact that all probabilities sum to 1
— derive everything else from there

M/M/m queue: Poisson arrivals, exponential distribution of
service time, m servers

Similar analysis to before, except now the probability of a
departure is proportional to the number of servers in use,
because a departure occurs if AT LEAST one of the servers
has a departure

¢« Nowp=mp

.
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Markov chain for M/M/m ': :
g

A8 A8 A8 A8 A8 A8 A8
nd 2ud 3ud (m-1)ud mpd mud mud

P(N=n-1)=nuP(N=n)forn<m
P(N=n-1)=muP(N=n)forn>m

mmpn

so PN=n)=P(N=0)

m!

-1
m m 1t
m7p" | mim’p
(1-p)m! n=0 n!

where P(N =0) :{
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« Second question, what is the probability that a customer must
wait in queue:Erlang C formula

Let us answer our first two questions

4
r

"3 L]

* We now have the tools to answer our third question: would I rather
have a single more powerful server or many weaker servers?

One server or many?

w P(N=0)m™p™ » Would we rather have a single server with service rate myt or m
Po= XP(N=n)= W servers with service rate p?
n=m - .
« Applying Little’s theorem:
(1-p)a
T-Liw
o
N=AT
MIT MIT
M/M/o0 - M/M/m/m 2 2 |

« Infinite number of servers

« Taking m to go to o in the M/M/m system, we have that the
occupancy distribution is Poisson with parameter A/p

iE
— e
P(N =n) _\H)

n!

N=

x>

« T=1/p

MIT

« Upper bound on the queue size
A A

ud 2ud 3ud (m—1)ud mpd
P(N=n—-1)=nuP(N=n)forn<m

ﬂl n j{ n
(ﬁj el (;J

so PN=n)=P(N=0)~"~—forn<m where PN=0)=| ¥ ~~—~—
m! n=0 n!

« The answer to our third question is, using PASTA, the
probability P(N=m)
MIT

Networks of queues

¢ Closed form solutions are difficult to obtain
« Poisson with feedback does not remain Poisson

———

Poisson Poisson Poisson
2 NOT POISSON
Poisson
< Yy
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Network of queues

Several streams, each on a path p, each with rate A(p)
» Let us look at directed link (i,j):

A3, )= i)
all paths p traversing link (i, j)

(i, j) = service rate on link (i, j)
N(, j) = average number of packets on link (i, j)

MIT




Kleinrock independence assumption

* Assume all queues behave like M/M/1 with arrival rate A(i,j),
service rate n(i,j), and service/propagation delay d(i.j)
¢ Then 2

N.=— 8 424

R REYY B
average number of packets in the whole network
N=3% Nj;

ij
average time in the system (using Little's theorem)
~ N
A,
P

MIT
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How good is it?

Good for densely connected networks and moderate to hcaV}Hoads
Good to guide topology design before involving simulation, other
applications where a rough estimate is needed

Are there any networks of queues where we can establish
analytical results?

Assuming that:

— arrival processes from outside the network are Poisson

— at each queue, streams have the same exponential service time distribution and a
single server

— interarrival times and service times are independent

Then:

— the steady state occupancy probabilities in each queue are the
same as if the queue were M/M/1 in isolation

MIT
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