ECE 541

Stochastic Signals and Systems
 Problem Set 6 Solution

Problem Solutions : Yates and Goodman, 6.1.3 6.2.2 6.2.6 6.3.4 6.4.3 6.4.4 6.5.4 6.6.3 6.8.1 and 6.8.5

Problem 6.1.3 Solution

(a) The PMF of N_{1}, the number of phone calls needed to obtain the correct answer, can be determined by observing that if the correct answer is given on the nth call, then the previous $n-1$ calls must have given wrong answers so that

$$
P_{N_{1}}(n)= \begin{cases}(3 / 4)^{n-1}(1 / 4) & n=1,2, \ldots \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

(b) N_{1} is a geometric random variable with parameter $p=1 / 4$. In Theorem 2.5, the mean of a geometric random variable is found to be $1 / p$. For our case, $E\left[N_{1}\right]=4$.
(c) Using the same logic as in part (a) we recognize that in order for n to be the fourth correct answer, that the previous $n-1$ calls must have contained exactly 3 correct answers and that the fourth correct answer arrived on the n-th call. This is described by a Pascal random variable.

$$
P_{N_{4}}\left(n_{4}\right)= \begin{cases}\binom{n-1}{3}(3 / 4)^{n-4}(1 / 4)^{4} & n=4,5, \ldots \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

(d) Using the hint given in the problem statement we can find the mean of N_{4} by summing up the means of the 4 identically distributed geometric random variables each with mean 4. This gives $E\left[N_{4}\right]=4 E\left[N_{1}\right]=16$.

Problem 6.2.2 Solution

The joint PDF of X and Y is

$$
f_{X, Y}(x, y)= \begin{cases}1 & 0 \leq x, y \leq 1 \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

Proceeding as in Problem 6.2.1, we must first find $F_{W}(w)$ by integrating over the square defined by $0 \leq x, y \leq 1$. Again we are forced to find $F_{W}(w)$ in parts as we did in Problem 6.2.1 resulting in the following integrals for their appropriate regions. For $0 \leq w \leq 1$,

$$
\begin{equation*}
F_{W}(w)=\int_{0}^{w} \int_{0}^{w-x} d x d y=w^{2} / 2 \tag{2}
\end{equation*}
$$

For $1 \leq w \leq 2$,

$$
\begin{equation*}
F_{W}(w)=\int_{0}^{w-1} \int_{0}^{1} d x d y+\int_{w-1}^{1} \int_{0}^{w-y} d x d y=2 w-1-w^{2} / 2 \tag{3}
\end{equation*}
$$

The complete CDF $F_{W}(w)$ is shown below along with the corresponding PDF $f_{W}(w)=$ $d F_{W}(w) / d w$.

$$
F_{W}(w)=\left\{\begin{array}{ll}
0 & w<0 \tag{4}\\
w^{2} / 2 & 0 \leq w \leq 1 \\
2 w-1-w^{2} / 2 & 1 \leq w \leq 2 \\
1 & \text { otherwise }
\end{array} \quad f_{W}(w)= \begin{cases}w & 0 \leq w \leq 1 \\
2-w & 1 \leq w \leq 2 \\
0 & \text { otherwise }\end{cases}\right.
$$

Problem 6.2.6 Solution

The random variables K and J have PMFs

$$
P_{J}(j)=\left\{\begin{array}{ll}
\frac{\alpha^{j} e^{-\alpha}}{j!} & j=0,1,2, \ldots \tag{1}\\
0 & \text { otherwise }
\end{array} \quad P_{K}(k)= \begin{cases}\frac{\beta^{k} e^{-\beta}}{k!} & k=0,1,2, \ldots \\
0 & \text { otherwise }\end{cases}\right.
$$

For $n \geq 0$, we can find the PMF of $N=J+K$ via

$$
\begin{equation*}
P[N=n]=\sum_{k=-\infty}^{\infty} P[J=n-k, K=k] \tag{2}
\end{equation*}
$$

Since J and K are independent, non-negative random variables,

$$
\begin{align*}
P[N=n] & =\sum_{k=0}^{n} P_{J}(n-k) P_{K}(k) \tag{3}\\
& =\sum_{k=0}^{n} \frac{\alpha^{n-k} e^{-\alpha}}{(n-k)!} \frac{\beta^{k} e^{-\beta}}{k!} \tag{4}\\
& =\frac{(\alpha+\beta)^{n} e^{-(\alpha+\beta)}}{n!} \underbrace{\sum_{k=0}^{n} \frac{n!}{k!(n-k)!}\left(\frac{\alpha}{\alpha+\beta}\right)^{n-k}\left(\frac{\beta}{\alpha+\beta}\right)^{k}}_{1} \tag{5}
\end{align*}
$$

The marked sum above equals 1 because it is the sum of a binomial PMF over all possible values. The PMF of N is the Poisson PMF

$$
P_{N}(n)= \begin{cases}\frac{(\alpha+\beta)^{n} e^{-(\alpha+\beta)}}{n!} & n=0,1,2, \ldots \tag{6}\\ 0 & \text { otherwise }\end{cases}
$$

Problem 6.3.4 Solution

Using the moment generating function of $X, \phi_{X}(s)=e^{\sigma^{2} s^{2} / 2}$. We can find the nth moment of $X, E\left[X^{n}\right]$ by taking the nth derivative of $\phi_{X}(s)$ and setting $s=0$.

$$
\begin{align*}
E[X] & =\left.\sigma^{2} s e^{\sigma^{2} s^{2} / 2}\right|_{s=0}=0 \tag{1}\\
E\left[X^{2}\right] & =\sigma^{2} e^{\sigma^{2} s^{2} / 2}+\left.\sigma^{4} s^{2} e^{\sigma^{2} s^{2} / 2}\right|_{s=0}=\sigma^{2} \tag{2}
\end{align*}
$$

Continuing in this manner we find that

$$
\begin{align*}
& E\left[X^{3}\right]=\left.\left(3 \sigma^{4} s+\sigma^{6} s^{3}\right) e^{\sigma^{2} s^{2} / 2}\right|_{s=0}=0 \tag{3}\\
& E\left[X^{4}\right]=\left.\left(3 \sigma^{4}+6 \sigma^{6} s^{2}+\sigma^{8} s^{4}\right) e^{\sigma^{2} s^{2} / 2}\right|_{s=0}=3 \sigma^{4} \tag{4}
\end{align*}
$$

To calculate the moments of Y, we define $Y=X+\mu$ so that Y is Gaussian (μ, σ). In this case the second moment of Y is

$$
\begin{equation*}
E\left[Y^{2}\right]=E\left[(X+\mu)^{2}\right]=E\left[X^{2}+2 \mu X+\mu^{2}\right]=\sigma^{2}+\mu^{2} . \tag{5}
\end{equation*}
$$

Similarly, the third moment of Y is

$$
\begin{align*}
E\left[Y^{3}\right] & =E\left[(X+\mu)^{3}\right] \tag{6}\\
& =E\left[X^{3}+3 \mu X^{2}+3 \mu^{2} X+\mu^{3}\right]=3 \mu \sigma^{2}+\mu^{3} . \tag{7}
\end{align*}
$$

Finally, the fourth moment of Y is

$$
\begin{align*}
E\left[Y^{4}\right] & =E\left[(X+\mu)^{4}\right] \tag{8}\\
& =E\left[X^{4}+4 \mu X^{3}+6 \mu^{2} X^{2}+4 \mu^{3} X+\mu^{4}\right] \tag{9}\\
& =3 \sigma^{4}+6 \mu^{2} \sigma^{2}+\mu^{4} . \tag{10}
\end{align*}
$$

Problem 6.4.3 Solution

In the iid random sequence K_{1}, K_{2}, \ldots, each K_{i} has PMF

$$
P_{K}(k)= \begin{cases}1-p & k=0 \tag{1}\\ p & k=1 \\ 0 & \text { otherwise } .\end{cases}
$$

(a) The MGF of K is $\phi_{K}(s)=E\left[e^{s K}\right]=1-p+p e^{s}$.
(b) By Theorem 6.8, $M=K_{1}+K_{2}+\ldots+K_{n}$ has MGF

$$
\begin{equation*}
\phi_{M}(s)=\left[\phi_{K}(s)\right]^{n}=\left[1-p+p e^{s}\right]^{n} \tag{2}
\end{equation*}
$$

(c) Although we could just use the fact that the expectation of the sum equals the sum of the expectations, the problem asks us to find the moments using $\phi_{M}(s)$. In this case,

$$
\begin{equation*}
E[M]=\left.\frac{d \phi_{M}(s)}{d s}\right|_{s=0}=\left.n\left(1-p+p e^{s}\right)^{n-1} p e^{s}\right|_{s=0}=n p \tag{3}
\end{equation*}
$$

The second moment of M can be found via

$$
\begin{align*}
E\left[M^{2}\right] & =\left.\frac{d \phi_{M}(s)}{d s}\right|_{s=0} \tag{4}\\
& =\left.n p\left((n-1)\left(1-p+p e^{s}\right) p e^{2 s}+\left(1-p+p e^{s}\right)^{n-1} e^{s}\right)\right|_{s=0} \tag{5}\\
& =n p[(n-1) p+1] \tag{6}
\end{align*}
$$

The variance of M is

$$
\begin{equation*}
\operatorname{Var}[M]=E\left[M^{2}\right]-(E[M])^{2}=n p(1-p)=n \operatorname{Var}[K] \tag{7}
\end{equation*}
$$

Problem 6.4.4 Solution

Based on the problem statement, the number of points X_{i} that you earn for game i has PMF

$$
P_{X_{i}}(x)= \begin{cases}1 / 3 & x=0,1,2 \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

(a) The MGF of X_{i} is

$$
\begin{equation*}
\phi_{X_{i}}(s)=E\left[e^{s X_{i}}\right]=1 / 3+e^{s} / 3+e^{2 s} / 3 \tag{2}
\end{equation*}
$$

Since $Y=X_{1}+\cdots+X_{n}$, Theorem 6.8 implies

$$
\begin{equation*}
\phi_{Y}(s)=\left[\phi_{X_{i}}(s)\right]^{n}=\left[1+e^{s}+e^{2 s}\right]^{n} / 3^{n} \tag{3}
\end{equation*}
$$

(b) First we observe that first and second moments of X_{i} are

$$
\begin{align*}
E\left[X_{i}\right] & =\sum_{x} x P_{X_{i}}(x)=1 / 3+2 / 3=1 \tag{4}\\
E\left[X_{i}^{2}\right] & =\sum_{x} x^{2} P_{X_{i}}(x)=1^{2} / 3+2^{2} / 3=5 / 3 \tag{5}
\end{align*}
$$

Hence,

$$
\begin{equation*}
\operatorname{Var}\left[X_{i}\right]=E\left[X_{i}^{2}\right]-\left(E\left[X_{i}\right]\right)^{2}=2 / 3 . \tag{6}
\end{equation*}
$$

By Theorems 6.1 and 6.3 , the mean and variance of Y are

$$
\begin{align*}
E[Y] & =n E[X]=n \tag{7}\\
\operatorname{Var}[Y] & =n \operatorname{Var}[X]=2 n / 3 \tag{8}
\end{align*}
$$

Another more complicated way to find the mean and variance is to evaluate derivatives of $\phi_{Y}(s)$ as $s=0$.

Problem 6.5.4 Solution

Donovan McNabb's passing yardage is the random sum of random variables

$$
\begin{equation*}
V+Y_{1}+\cdots+Y_{K} \tag{1}
\end{equation*}
$$

where Y_{i} has the exponential PDF

$$
f_{Y_{i}}(y)= \begin{cases}\frac{1}{15} e^{-y / 15} & y \geq 0 \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

From Table 6.1, the MGFs of Y and K are

$$
\begin{equation*}
\phi_{Y}(s)=\frac{1 / 15}{1 / 15-s}=\frac{1}{1-15 s} \quad \phi_{K}(s)=e^{20\left(e^{s}-1\right)} \tag{3}
\end{equation*}
$$

From Theorem 6.12, V has MGF

$$
\begin{equation*}
\phi_{V}(s)=\phi_{K}\left(\ln \phi_{Y}(s)\right)=e^{20\left(\phi_{Y}(s)-s\right)}=e^{300 s /(1-15 s)} \tag{4}
\end{equation*}
$$

The PDF of V cannot be found in a simple form. However, we can use the MGF to calculate the mean and variance. In particular,

$$
\begin{align*}
E[V] & =\left.\frac{d \phi_{V}(s)}{d s}\right|_{s=0}=\left.e^{300 s /(1-15 s)} \frac{300}{(1-15 s)^{2}}\right|_{s=0}=300 \tag{5}\\
E\left[V^{2}\right] & =\left.\frac{d^{2} \phi_{V}(s)}{d s^{2}}\right|_{s=0} \tag{6}\\
& =e^{300 s /(1-15 s)}\left(\frac{300}{(1-15 s)^{2}}\right)^{2}+\left.e^{300 s /(1-15 s)} \frac{9000}{(1-15 s)^{3}}\right|_{s=0}=99,000 \tag{7}
\end{align*}
$$

Thus, V has variance $\operatorname{Var}[V]=E\left[V^{2}\right]-(E[V])^{2}=9,000$ and standard deviation $\sigma_{V} \approx 94.9$.
A second way to calculate the mean and variance of V is to use Theorem 6.13 which says

$$
\begin{align*}
E[V] & =E[K] E[Y]=20(15)=200 \tag{8}\\
\operatorname{Var}[V] & =E[K] \operatorname{Var}[Y]+\operatorname{Var}[K](E[Y])^{2}=(20) 15^{2}+(20) 15^{2}=9000 \tag{9}
\end{align*}
$$

Problem 6.6.3 Solution

(a) Let X_{1}, \ldots, X_{120} denote the set of call durations (measured in minutes) during the month. From the problem statement, each $X-I$ is an exponential (λ) random variable with $E\left[X_{i}\right]=1 / \lambda=2.5 \mathrm{~min}$ and $\operatorname{Var}\left[X_{i}\right]=1 / \lambda^{2}=6.25 \mathrm{~min}^{2}$. The total number of minutes used during the month is $Y=X_{1}+\cdots+X_{120}$. By Theorem 6.1 and Theorem 6.3,

$$
\begin{equation*}
E[Y]=120 E\left[X_{i}\right]=300 \quad \operatorname{Var}[Y]=120 \operatorname{Var}\left[X_{i}\right]=750 . \tag{1}
\end{equation*}
$$

The subscriber's bill is $30+0.4(y-300)^{+}$where $x^{+}=x$ if $x \geq 0$ or $x^{+}=0$ if $x<0$. the subscribers bill is exactly $\$ 36$ if $Y=315$. The probability the subscribers bill exceeds $\$ 36$ equals

$$
\begin{equation*}
P[Y>315]=P\left[\frac{Y-300}{\sigma_{Y}}>\frac{315-300}{\sigma_{Y}}\right]=Q\left(\frac{15}{\sqrt{750}}\right)=0.2919 . \tag{2}
\end{equation*}
$$

(b) If the actual call duration is X_{i}, the subscriber is billed for $M_{i}=\left\lceil X_{i}\right\rceil$ minutes. Because each X_{i} is an exponential (λ) random variable, Theorem 3.9 says that M_{i} is a geometric (p) random variable with $p=1-e^{-\lambda}=0.3297$. Since M_{i} is geometric,

$$
\begin{equation*}
E\left[M_{i}\right]=\frac{1}{p}=3.033, \quad \quad \operatorname{Var}\left[M_{i}\right]=\frac{1-p}{p^{2}}=6.167 \tag{3}
\end{equation*}
$$

The number of billed minutes in the month is $B=M_{1}+\cdots+M_{120}$. Since M_{1}, \ldots, M_{120} are iid random variables,

$$
\begin{equation*}
E[B]=120 E\left[M_{i}\right]=364.0, \quad \operatorname{Var}[B]=120 \operatorname{Var}\left[M_{i}\right]=740.08 \tag{4}
\end{equation*}
$$

Similar to part (a), the subscriber is billed $\$ 36$ if $B=315$ minutes. The probability the subscriber is billed more than $\$ 36$ is

$$
\begin{equation*}
P[B>315]=P\left[\frac{B-364}{\sqrt{740.08}}>\frac{315-365}{\sqrt{740.08}}\right]=Q(-1.8)=\Phi(1.8)=0.964 \tag{5}
\end{equation*}
$$

Problem 6.8.1 Solution

The $N[0,1]$ random variable Z has $\operatorname{MGF} \phi_{Z}(s)=e^{s^{2} / 2}$. Hence the Chernoff bound for Z is

$$
\begin{equation*}
P[Z \geq c] \leq \min _{s \geq 0} e^{-s c} e^{s^{2} / 2}=\min _{s \geq 0} e^{s^{2} / 2-s c} \tag{1}
\end{equation*}
$$

We can minimize $e^{s^{2} / 2-s c}$ by minimizing the exponent $s^{2} / 2-s c$. By setting

$$
\begin{equation*}
\frac{d}{d s}\left(s^{2} / 2-s c\right)=2 s-c=0 \tag{2}
\end{equation*}
$$

we obtain $s=c$. At $s=c$, the upper bound is $P[Z \geq c] \leq e^{-c^{2} / 2}$. The table below compares this upper bound to the true probability. Note that for $c=1,2$ we use Table 3.1 and the fact that $Q(c)=1-\Phi(c)$.

	$c=1$	$c=2$	$c=3$	$c=4$	$c=5$
Chernoff bound	0.606	0.135	0.011	3.35×10^{-4}	3.73×10^{-6}
$Q(c)$	0.1587	0.0228	0.0013	3.17×10^{-5}	2.87×10^{-7}

We see that in this case, the Chernoff bound typically overestimates the true probability by roughly a factor of 10 .

Problem 6.8.5 Solution

Let $W_{n}=X_{1}+\cdots+X_{n}$. Since $M_{n}(X)=W_{n} / n$, we can write

$$
\begin{equation*}
P\left[M_{n}(X) \geq c\right]=P\left[W_{n} \geq n c\right] \tag{1}
\end{equation*}
$$

Since $\phi_{W_{n}}(s)=\left(\phi_{X}(s)\right)^{n}$, applying the Chernoff bound to W_{n} yields

$$
\begin{equation*}
P\left[W_{n} \geq n c\right] \leq \min _{s \geq 0} e^{-s n c} \phi_{W_{n}}(s)=\min _{s \geq 0}\left(e^{-s c} \phi_{X}(s)\right)^{n} \tag{2}
\end{equation*}
$$

For $y \geq 0, y^{n}$ is a nondecreasing function of y. This implies that the value of s that minimizes $e^{-s c} \phi_{X}(s)$ also minimizes $\left(e^{-s c} \phi_{X}(s)\right)^{n}$. Hence

$$
\begin{equation*}
P\left[M_{n}(X) \geq c\right]=P\left[W_{n} \geq n c\right] \leq\left(\min _{s \geq 0} e^{-s c} \phi_{X}(s)\right)^{n} \tag{3}
\end{equation*}
$$

