
ECE 541

Stochastic Signals and Systems

Problem Set 6 Solution

Problem Solutions : Yates and Goodman, 6.1.3 6.2.2 6.2.6 6.3.4 6.4.3 6.4.4 6.5.4 6.6.3
6.8.1 and 6.8.5

Problem 6.1.3 Solution

(a) The PMF of N1, the number of phone calls needed to obtain the correct answer, can
be determined by observing that if the correct answer is given on the nth call, then
the previous n − 1 calls must have given wrong answers so that

PN1 (n) =

{
(3/4)n−1(1/4) n = 1, 2, . . .
0 otherwise

(1)

(b) N1 is a geometric random variable with parameter p = 1/4. In Theorem 2.5, the mean
of a geometric random variable is found to be 1/p. For our case, E[N1] = 4.

(c) Using the same logic as in part (a) we recognize that in order for n to be the fourth
correct answer, that the previous n − 1 calls must have contained exactly 3 correct
answers and that the fourth correct answer arrived on the n-th call. This is described
by a Pascal random variable.

PN4 (n4) =

{ (n−1
3

)
(3/4)n−4(1/4)4 n = 4, 5, . . .

0 otherwise
(2)

(d) Using the hint given in the problem statement we can find the mean of N4 by summing
up the means of the 4 identically distributed geometric random variables each with
mean 4. This gives E[N4] = 4E[N1] = 16.

Problem 6.2.2 Solution

The joint PDF of X and Y is

fX,Y (x, y) =

{
1 0 ≤ x, y ≤ 1
0 otherwise

(1)

Proceeding as in Problem 6.2.1, we must first find FW (w) by integrating over the square de-
fined by 0 ≤ x, y ≤ 1. Again we are forced to find FW (w) in parts as we did in Problem 6.2.1
resulting in the following integrals for their appropriate regions. For 0 ≤ w ≤ 1,

FW (w) =

∫ w

0

∫ w−x

0
dx dy = w2/2 (2)
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For 1 ≤ w ≤ 2,

FW (w) =

∫ w−1

0

∫ 1

0
dx dy +

∫ 1

w−1

∫ w−y

0
dx dy = 2w − 1 − w2/2 (3)

The complete CDF FW (w) is shown below along with the corresponding PDF fW (w) =
dFW (w)/dw.

FW (w) =







0 w < 0
w2/2 0 ≤ w ≤ 1
2w − 1 − w2/2 1 ≤ w ≤ 2
1 otherwise

fW (w) =







w 0 ≤ w ≤ 1
2 − w 1 ≤ w ≤ 2
0 otherwise

(4)

Problem 6.2.6 Solution

The random variables K and J have PMFs

PJ (j) =

{
αje−α

j! j = 0, 1, 2, . . .

0 otherwise
PK (k) =

{
βke−β

k! k = 0, 1, 2, . . .
0 otherwise

(1)

For n ≥ 0, we can find the PMF of N = J + K via

P [N = n] =

∞∑

k=−∞

P [J = n − k,K = k] (2)

Since J and K are independent, non-negative random variables,

P [N = n] =

n∑

k=0

PJ (n − k) PK (k) (3)

=

n∑

k=0

αn−ke−α

(n − k)!

βke−β

k!
(4)

=
(α + β)ne−(α+β)

n!

n∑

k=0

n!

k!(n − k)!

(
α

α + β

)n−k (
β

α + β

)k

︸ ︷︷ ︸

1

(5)

The marked sum above equals 1 because it is the sum of a binomial PMF over all possible
values. The PMF of N is the Poisson PMF

PN (n) =

{
(α+β)ne−(α+β)

n! n = 0, 1, 2, . . .
0 otherwise

(6)

Problem 6.3.4 Solution

Using the moment generating function of X, φX(s) = eσ2s2/2. We can find the nth moment
of X, E[Xn] by taking the nth derivative of φX(s) and setting s = 0.

E [X] = σ2seσ2s2/2
∣
∣
∣
s=0

= 0 (1)

E
[
X2

]
= σ2eσ2s2/2 + σ4s2eσ2s2/2

∣
∣
∣
s=0

= σ2. (2)
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Continuing in this manner we find that

E
[
X3

]
=

(
3σ4s + σ6s3

)
eσ2s2/2

∣
∣
∣
s=0

= 0 (3)

E
[
X4

]
=

(
3σ4 + 6σ6s2 + σ8s4

)
eσ2s2/2

∣
∣
∣
s=0

= 3σ4. (4)

To calculate the moments of Y , we define Y = X + µ so that Y is Gaussian (µ, σ). In this
case the second moment of Y is

E
[
Y 2

]
= E

[
(X + µ)2

]
= E

[
X2 + 2µX + µ2

]
= σ2 + µ2. (5)

Similarly, the third moment of Y is

E
[
Y 3

]
= E

[
(X + µ)3

]
(6)

= E
[
X3 + 3µX2 + 3µ2X + µ3

]
= 3µσ2 + µ3. (7)

Finally, the fourth moment of Y is

E
[
Y 4

]
= E

[
(X + µ)4

]
(8)

= E
[
X4 + 4µX3 + 6µ2X2 + 4µ3X + µ4

]
(9)

= 3σ4 + 6µ2σ2 + µ4. (10)

Problem 6.4.3 Solution

In the iid random sequence K1,K2, . . ., each Ki has PMF

PK (k) =







1 − p k = 0,
p k = 1,
0 otherwise.

(1)

(a) The MGF of K is φK(s) = E[esK ] = 1 − p + pes.

(b) By Theorem 6.8, M = K1 + K2 + . . . + Kn has MGF

φM (s) = [φK(s)]n = [1 − p + pes]n (2)

(c) Although we could just use the fact that the expectation of the sum equals the sum
of the expectations, the problem asks us to find the moments using φM (s). In this
case,

E [M ] =
dφM (s)

ds

∣
∣
∣
∣
s=0

= n(1 − p + pes)n−1pes
∣
∣
s=0

= np (3)

The second moment of M can be found via

E
[
M2

]
=

dφM (s)

ds

∣
∣
∣
∣
s=0

(4)

= np
(
(n − 1)(1 − p + pes)pe2s + (1 − p + pes)n−1es

)∣
∣
s=0

(5)

= np[(n − 1)p + 1] (6)

The variance of M is

Var[M ] = E
[
M2

]
− (E [M ])2 = np(1 − p) = nVar[K] (7)
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Problem 6.4.4 Solution

Based on the problem statement, the number of points Xi that you earn for game i has
PMF

PXi
(x) =

{
1/3 x = 0, 1, 2
0 otherwise

(1)

(a) The MGF of Xi is

φXi
(s) = E

[
esXi

]
= 1/3 + es/3 + e2s/3 (2)

Since Y = X1 + · · · + Xn, Theorem 6.8 implies

φY (s) = [φXi
(s)]n = [1 + es + e2s]n/3n (3)

(b) First we observe that first and second moments of Xi are

E [Xi] =
∑

x

xPXi
(x) = 1/3 + 2/3 = 1 (4)

E
[
X2

i

]
=

∑

x

x2PXi
(x) = 12/3 + 22/3 = 5/3 (5)

Hence,
Var[Xi] = E

[
X2

i

]
− (E [Xi])

2 = 2/3. (6)

By Theorems 6.1 and 6.3, the mean and variance of Y are

E [Y ] = nE [X] = n (7)

Var[Y ] = nVar[X] = 2n/3 (8)

Another more complicated way to find the mean and variance is to evaluate derivatives
of φY (s) as s = 0.

Problem 6.5.4 Solution

Donovan McNabb’s passing yardage is the random sum of random variables

V + Y1 + · · · + YK (1)

where Yi has the exponential PDF

fYi
(y) =

{
1
15e−y/15 y ≥ 0
0 otherwise

(2)

From Table 6.1, the MGFs of Y and K are

φY (s) =
1/15

1/15 − s
=

1

1 − 15s
φK(s) = e20(es−1) (3)

From Theorem 6.12, V has MGF

φV (s) = φK(lnφY (s)) = e20(φY (s)−s) = e300s/(1−15s) (4)
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The PDF of V cannot be found in a simple form. However, we can use the MGF to calculate
the mean and variance. In particular,

E [V ] =
dφV (s)

ds

∣
∣
∣
∣
s=0

= e300s/(1−15s) 300

(1 − 15s)2

∣
∣
∣
∣
s=0

= 300 (5)

E
[
V 2

]
=

d2φV (s)

ds2

∣
∣
∣
∣
s=0

(6)

= e300s/(1−15s)

(
300

(1 − 15s)2

)2

+ e300s/(1−15s) 9000

(1 − 15s)3

∣
∣
∣
∣
∣
s=0

= 99, 000 (7)

Thus, V has variance Var[V ] = E[V 2]−(E[V ])2 = 9, 000 and standard deviation σV ≈ 94.9.
A second way to calculate the mean and variance of V is to use Theorem 6.13 which

says

E [V ] = E [K]E [Y ] = 20(15) = 200 (8)

Var[V ] = E [K] Var[Y ] + Var[K](E [Y ])2 = (20)152 + (20)152 = 9000 (9)

Problem 6.6.3 Solution

(a) Let X1, . . . , X120 denote the set of call durations (measured in minutes) during the
month. From the problem statement, each X−I is an exponential (λ) random variable
with E[Xi] = 1/λ = 2.5 min and Var[Xi] = 1/λ2 = 6.25 min2. The total number
of minutes used during the month is Y = X1 + · · · + X120. By Theorem 6.1 and
Theorem 6.3,

E [Y ] = 120E [Xi] = 300 Var[Y ] = 120Var[Xi] = 750. (1)

The subscriber’s bill is 30 + 0.4(y − 300)+ where x+ = x if x ≥ 0 or x+ = 0 if x < 0.
the subscribers bill is exactly $36 if Y = 315. The probability the subscribers bill
exceeds $36 equals

P [Y > 315] = P

[
Y − 300

σY
>

315 − 300

σY

]

= Q

(
15√
750

)

= 0.2919. (2)

(b) If the actual call duration is Xi, the subscriber is billed for Mi = dXie minutes.
Because each Xi is an exponential (λ) random variable, Theorem 3.9 says that Mi is
a geometric (p) random variable with p = 1 − e−λ = 0.3297. Since Mi is geometric,

E [Mi] =
1

p
= 3.033, Var[Mi] =

1 − p

p2
= 6.167. (3)

The number of billed minutes in the month is B = M1+· · ·+M120. Since M1, . . . ,M120

are iid random variables,

E [B] = 120E [Mi] = 364.0, Var[B] = 120Var[Mi] = 740.08. (4)
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Similar to part (a), the subscriber is billed $36 if B = 315 minutes. The probability
the subscriber is billed more than $36 is

P [B > 315] = P

[
B − 364√

740.08
>

315 − 365√
740.08

]

= Q(−1.8) = Φ(1.8) = 0.964. (5)

Problem 6.8.1 Solution

The N [0, 1] random variable Z has MGF φZ(s) = es2/2. Hence the Chernoff bound for Z is

P [Z ≥ c] ≤ min
s≥0

e−sces2/2 = min
s≥0

es2/2−sc (1)

We can minimize es2/2−sc by minimizing the exponent s2/2 − sc. By setting

d

ds

(
s2/2 − sc

)
= 2s − c = 0 (2)

we obtain s = c. At s = c, the upper bound is P [Z ≥ c] ≤ e−c2/2. The table below compares
this upper bound to the true probability. Note that for c = 1, 2 we use Table 3.1 and the
fact that Q(c) = 1 − Φ(c).

c = 1 c = 2 c = 3 c = 4 c = 5

Chernoff bound 0.606 0.135 0.011 3.35 × 10−4 3.73 × 10−6

Q(c) 0.1587 0.0228 0.0013 3.17 × 10−5 2.87 × 10−7
(3)

We see that in this case, the Chernoff bound typically overestimates the true probability
by roughly a factor of 10.

Problem 6.8.5 Solution

Let Wn = X1 + · · · + Xn. Since Mn(X) = Wn/n, we can write

P [Mn(X) ≥ c] = P [Wn ≥ nc] (1)

Since φWn(s) = (φX(s))n, applying the Chernoff bound to Wn yields

P [Wn ≥ nc] ≤ min
s≥0

e−sncφWn(s) = min
s≥0

(
e−scφX(s)

)n
(2)

For y ≥ 0, yn is a nondecreasing function of y. This implies that the value of s that
minimizes e−scφX(s) also minimizes (e−scφX(s))n. Hence

P [Mn(X) ≥ c] = P [Wn ≥ nc] ≤
(

min
s≥0

e−scφX(s)

)n

(3)
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