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There are 4 questions. You have three hours to answer them. Show all work. Answers given without work
will receive no credit. GOOD LUCK!

1. (35 points)Let k be a parameter which can take on valuesk = 0, 1, · · · . We form a random
variableR as

R =

k2
∑

ℓ=1

Gℓ

where theGℓ are i.i.d. zero mean unit variance Gaussian random variables. If k = 0 we
defineR = 0

(a) (5 points)Givenk, what is the probability density forR?
SOLUTION: Givenk we have a sum ofk Gaussians soR is a zero mean Gaussian
with variancek2.

fR|k(r|k) =

√

1

2π

1

k
e−

r2

2k2

Notice that this probability model comports with the definition of R since atk = 0, R
has an impulse distribution atR = 0.

(b) (10 points)What is the ML estimate fork, k̂(R)? What isE[k̂(R)|k]? Is this estimate
biased or unbiased?
SOLUTION: We maximizefR|k(r|k) in k. We can take the log to make life easier

d ln fR|k(r|k)

dk
= −1

k
+

r2

k3
=

1

k
(
r2

k2
− 1)

which is strictly monotone decreasing ink. Since the value atk = 0 is +∞, fR|k(r|k)
initially increases and then decreases. So when we find the value at which the derivative
is zero, we’ll have found the function maximum. Thus, accounting for the fact thatk
must be non-negative,

k̂(R) = |R|

E[k̂(R)|k] =
√

2
π
k 6= k so the estimate is biased.

(c) (10 points)What is the ML estimate fork2, k̂2(R)? What isE[k̂2(R)|k]? Is this
estimate biased or unbiased?
SOLUTION: LettingN = k2 we have

d ln fR|√n(r|√n)

dn
= − 1

2n
+

r2

2n2
=

1

2n
(
r2

n
− 1)
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so that
k̂2(R) = R2

This estimator hasE[k̂2(R)|k] = k2 so the estimate is unbiased.

(d) (10 points)Suppose we have a series of identically composed, but independent mea-
surementsRm wherem = 1, 2, · · · , M . What is the ML estimate fork2 based on these
M measurements? Is the estimate biased or unbiased? Is the estimate consistent?

SOLUTION: TheRm are independent so

fR|k(r|
√

n) =

(

1

2πn

)M/2

e−
1
2n

PM
m=1 r2

m

Definingρ2 =
∑M

m=1 r2
m we have,

d ln fR|k(r|
√

n)

dn
= −M

2n
+

ρ2

2n2
=

1

n
(
ρ2

n
− M)

so that

k̂2(r) =
1

M

M
∑

m=1

r2
m

The mean of the estimator is

E

[

1

M

M
∑

m=1

r2
m

]

= k2

so the estimator is unbiased. We also see thatk̂2(r) is the sample mean forR2 and must
therefore converge to the mean ofR2 with probability 1. Since the mean ofE[R2] = k2,
the estimator is consistent.

2. (35 points)SupposeY andX are zero mean jointly Gaussian random variables and you wish
to estimateY from X. If we defineZ as

Z =

[

X
Y

]

then the joint distribution is

fXY (x, y) = fZ(z) =
1

2π
√

1 − ρ2
e
− 1

2(1−ρ2)
z
⊤

2

4

1 −ρ
−ρ 1

3

5z

where−1 < ρ = E[XY ] < 1

(a) (10 points)What is theLinearMMSE estimate ofY givenx?

SOLUTION: Ŷ (x) = ρ
σ2

x
x = ρx
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(b) (10 points)Please derive the maximum likelihood estimate ofY givenx.

SOLUTION: First we need the marginals forX andY – both are going to be Gaus-
sian since they’re jointly Gaussian. The inverse of the covariance matrix is

K
−1 =

1

1 − ρ2

[

1 −ρ
−ρ 1

]

and we recognize then verify that

K =

[

1 ρ
ρ 1

]

so thatσ2
x = σ2

y = 1.

Another approach would be to integrate the joint PDF which weexpand out from the
definition

fX(x) =

∫ ∞

−∞

1

2π

1
√

1 − ρ2
e
− 1

2(1−ρ2)
(x2−2ρxy+y2)

dy

We rearrange the exponent to obtain

fX(x) =
1

2π

1
√

1 − ρ2

∫ ∞

−∞
e
− 1

2(1−ρ2)
(ρ2x2−2ρxy+y2+(1−ρ2)x2)

dy

and thence

fX(x) =
1

2π

1
√

1 − ρ2
e−

x2

2

∫ ∞

−∞
e
− 1

2(1−ρ2)
(y−ρx)2

dy =
1√
2π

e−
x2

2

a zero mean unit variance Gaussian. Symmetry dictates the same result fory.

We need to maximizefX|Y (x|y) in y for the ML estimate.

fX|Y (x|y) = fZ(z)/fY (y) =

√

1

2π

1
√

1 − ρ2
e−

1
2((x2−2ρxy+y2)−(1−ρ2)y2)

The only thing that matters in the maximization is the exponent. We minimize the expo-
nent iny and findŶml(x) = x/ρ.

Some of you did the MAP estimate which is the maximum offZ(z) with respect toy.
I gave full credit if you did this correctly. Once again the exponent is all that matters
andx2 − 2ρxy + y2 is minimzed iny wheny = ρx, soŶmap(x) = ρx.

(c) (15 points)Please derive the MMSE estimate ofY givenx.

SOLUTION: To obtain the expected value ofY givenx we need

fY |X(y|x) = fZ(z)/fX(x) =

√

1

2π

1
√

1 − ρ2
e−

1
2((x2−2ρxy+y2)−(1−ρ2)x2)

Rearranging we have

fY |X(y|x) =

√

1

2π

1

1 − ρ2
e
− 1

2(1−ρ2)
(ρx−y)2

so the conditional mean ofY givenx is Ŷ (x) = ρx.
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3. (30 points)

A discrete time linear system has a random inputu(t) with

pU(t)(u(t)) =

{

α u(t) = 1
1 − α u(t) = −1

where0 < α < 1. Theu(t) at different points in time are all mutually independent. The
difference equation which describes the system is

x(t + 1) = x(t) + u(t)

Assumex(0) = 0.

(a) (10 points)What is the probability thatx(n) = 0, for n an integer greater than zero?
SOLUTION: This is a random walk markov chain in disguise. You can’t get back to
state zero in an odd number of steps so ifn is odd, Prob(x(n) = 0) = 0.

For n even, the number of forward steps has to be equal the number ofbackward steps
in order to return to zero. There are therefore

(

n
n/2

)

ways to return to zero, each having

probabilityα
n
2 (1 − α)

n
2 . Thus

Prob(x(n) = 0) =

{

0 n odd
(

n
n
2

)

(α(1 − α))
n
2 n even

(b) (10 points)Please derive the Linear minimum mean square estimate forx(T ) based on
the values ofx(t) for t = 1, 2, ..., T − 1. Assumex(0) = 0 andα = 1/2.

HINT: Don’t just try to turn a crank.

SOLUTION: This is a markov chain. Where you go depends only on where you
are, so estimatingx(T ) depends only onx(T − 1). Givenx(T − 1) there are only
two possibilities forx(T ), x(T − 1) + 1 andx(T − 1) − 1, both equally likely. The
conditional mean is the MMSE estimate and is easily found to be

E[x(T )|x(T − 1)] =
1

2
(x(T − 1) + 1) +

1

2
(x(T − 1) − 1) = x(T − 1)

This also happens to be a linear estimate.

It’s also guaranteed to be WRONG because we knowx(T ) 6= x(T − 1). However, it’s
the estimate which minimizes the mean square error.

(c) (10 points)Please derive the minimum mean square estimate forx(T ) based on the
values ofx(t) for t = 1, 2, ..., T − 1. Assumex(0) = 0 andα = 1/2.

SOLUTION: We solved this already in the previous part. The MMSE estimate also
happens to be a linear estimate. How cool is that?

4. (35 points)In between solving the world’s research problems, Rutgera Univera, the world
famous Rutgers University graduate student shops for food at Infinite Food Emporium, a
supermarket with infinite floorspace. The only thing finite about Infinite Food Emporium
is the number of checkout lines,N . The lines are identical, idependent and can be as long
as needed. The time a customer spends with a checkout clerk (cashier) is an exponential
random variable with mean1/µ.
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(a) (5 points)Suppose people (including Rutgera) arrive to the checkout lines as a Poisson
process with rateλ and then choose one of theN lines randomly. What value of service
rateµ guarantees that the service system is stable (that queue lengths do not tend toward
infinity)?

SOLUTION: The random selection gives the arrival rate to each queue asλ/N so
we must haveµ > λ/N for stability.

(b) (5 points)What is the steady state distribution of each line (number ofcustomers in the
line, including the one being served), assuming that the conditions established in the
previous part on finite waiting time are satisfied?

SOLUTION: We have a set of independentM/M/1/∞ queues each with arrival rate
λ/N and service rateµ. We established in class (and it’s easy to establish by cutting
the corresponding markov chain between states) that the steady state distribution is
geometric:

fK(k) =

(

λ

Nµ

)k (

1 − λ

Nµ

)

(c) (5 points)Assume the store has been open a long time by the time Rutgera reaches the
checkout line. What is Rutgera’s mean waiting time (the timespent in the line before
she begins service with the checkout clerk)?

SOLUTION: Random incidence of the Poisson process suggests that Rutgera arrives
at a random point in time which means she finds whatever queue she’s chosen at ran-
dom in steady state. The probability ofk customers in the queue ahead of her isfK(k)
as given in the previous part. As thek +1st customer, she’ll have to wait for thek folks
ahead of her to be serviced. The mean amount of time each spends in service is1/µ, so
her mean waiting time isk/µ given there are alreadyk customers present. Therefore,
her overall mean waiting time is

E[K]/µ =
1

µ

λ
Nµ

(

1 − λ
Nµ

) =

λ
Nµ

µ − λ
N

By the way, many of you MISapplied Little Theorem̄N = λT̄ by thinking forN̄ the
average number of customers in the steady state thatT̄ was the average WAITING time
WAITING. It is NOT.T̄ is the average time IN THE SYSTEM.

(d) (5 points)Rutgera is the last customer to reach the checkout lanes. After she joins
a queue, she notices that all the lines have exactlyC customers. Assume there are
no further arrivals to the checkout lanes. What is the probability that Rutgera’s lane
finishes first?

HINT: Remember that these are exponential servers.

SOLUTION: Owing to the exponential property of the servers, when Rutgera joins
the system and there areC customers in each queue, the states of theN independent
queues are identical. The symmetry of the problem dictates that any of the queues
is equally likely to be the fastest, so the probability that Rutgera’s queue is fastest to
empty is1/N .

(e) (15 points)Suppose Rutgera, instead of choosing a line at random, chooses the line
with the least number of customers in it. What is her mean waiting time?
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SOLUTION: This is a min-of-N problem. The probability that all of a set ofN iid
random variablesX is greater thanz is (1 − FX(z))N , so that the CDF onZ the
min-of-N over theN {Xi} is 1 − (1 − FX(z))N

The CDF of the state occupancy distribution is

FK(k) =
k

∑

m=0

fK(m) =

(

1 − λ

Nµ

) 1 −
(

λ
Nµ

)k+1

1 − λ
Nµ

= 1 −
(

λ

Nµ

)k+1

so that our min-of-N CDF is

FZ(z) = 1 −
(

λ

Nµ

)N(k+1)

Which is immediately recognized as the CDF of a geometric distribution with parame-

ter
(

λ
Nµ

)N

. Thus, the probability distribution on the minimum queue size is

fZ(z) = (1 −
(

λ

Nµ

)N

)

(

λ

Nµ

)Nz

with expected value

E[Z] =

(

λ
Nµ

)N

1 −
(

λ
Nµ

)N

so that the mean time Rutgera spends in line before service is
( λ

Nµ)
N

µ−µ( λ
Nµ)

N .
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