Problem Set 1 — Due Jan, 18

Lecturer: Jean C. Walrand

GSI: Daniel Preda, Assane Gueye

SP'07

Problem 1.1. Solution

To write the fraction in the form a + ib, we proceed as follows:

$$\begin{array}{rcl} \frac{1+3i}{2+i} &=& \frac{1+3i}{2+i} \times \frac{2-i}{2-i} \\ &=& \frac{2-i+6i+3}{(2)^2-(i)^2} \\ &=& \frac{5+5i}{4+1} = 1+i \end{array}$$

To write it in the form $r \times e^{i\theta}$ we notice that

$$1 + i = \sqrt{2}\left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)$$
$$= \sqrt{2}\left(\cos\left(\frac{\pi}{4}\right) + \sin\left(\frac{\pi}{4}\right)\right)$$
$$= \sqrt{2}e^{i\frac{\pi}{4}}$$

Problem 1.2. Solution We first verify that

$$\sum_{k=1}^{1} k^3 = 1 = \left(\sum_{k=1}^{1} k\right)^2$$

Thus the equality is true for n=1. Now assume that it is true for n-1 i.e.

$$\sum_{k=1}^{n-1} k^3 = \left(\sum_{k=1}^{n-1} k\right)^2$$

and let's show that it is true for n i.e

$$\sum_{k=1}^{n} k^3 = \left(\sum_{k=1}^{n} k\right)^2$$

We have that

$$\sum_{k=1}^{n} k^3 = \sum_{k=1}^{n-1} k^3 + n^3$$

Using the hypothesis that the equality is true for n-1, we can write

$$\sum_{k=1}^{n} k^{3} = \left(\sum_{k=1}^{n-1} k\right)^{2} + n^{3}$$

But we know that

$$\left(\sum_{k=1}^{n-1} k\right)^2 = \left(\frac{n(n-1)}{2}\right)^2$$

Thus

$$\sum_{k=1}^{n} k^{3} = \left(\frac{n(n-1)}{2}\right)^{2} + n^{3}$$

$$= n^{2}\left(\frac{n^{2}-2n+1}{4} + n\right)$$

$$= n^{2}\left(\frac{n^{2}-2n+1+4n}{4}\right)$$

$$= n^{2}\left(\frac{n^{2}+2n+1}{4}\right)$$

$$= \frac{n^{2}\left(\frac{n^{2}+2n+1}{4}\right)$$

$$= \frac{n^{2}(n+1)^{2}}{4}$$

$$= \left(\frac{n(n+1)}{2}\right)^{2}$$

$$= \left(\sum_{k=1}^{n} k\right)^{2}$$

Problem 1.3. Solution

One example of such function is

$$f(x) = \begin{cases} (\sqrt{2})^{-\frac{1}{x}} & x \in (0, 0.5] \\ 1 - (\sqrt{2})^{-\frac{1}{1-x}} & x \in (0.5, 1) \end{cases}$$

The function f is strictly increasing and

$$\lim_{x \to 0} f(x) = 0 \quad \lim_{x \to 1} f(x) = 1$$

Thus

$$\inf_{x \in (0,1)} f(x) = 0 \quad \sup_{x \in (0,1)} f(x) = 1$$

But $f(\cdot)$ does not have a maximum or a minimum in (0, 1). A plot of this function is shown is Figure 1.1

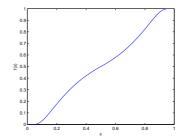


Figure 1.1. Plot of the function defined in exercise 3

Problem 1.4. Solution

To compute the integral, we use a small trick.

$$\int_0^1 \frac{x+1}{x+2} dx = \int_0^1 \frac{x+1+1-1}{x+2} dx$$
$$= \int_0^1 (1+\frac{1}{x+2}) dx$$
$$= x]_0^1 - \int_0^1 \frac{1}{x+2} dx$$
$$= 1 - [\log(x+2)]_0^1$$
$$= 1 - \log(3) + \log(2)$$

Problem 1.5. Solution

- 1. $0 \in (0, 1)$, False
- 2. $0 \subset (-1,3)$, True
- 3. $(0,1) \cup (1,2) = (0,2)$, False
- 4. The set of integers is uncountable, False

Problem 1.6. Solution

To compute the integral, we use integration by parts. Consider $u = x^2$ and $v' = e^{-x}$, we can rewrite the integral as (taking u' = 2x and $v = -e^{-x}$):

$$\int_{0}^{\infty} x^{2} e^{-x} dx = \left[-x^{2} e^{-x} \right]_{0}^{\infty} + 2 \int_{0}^{\infty} x e^{-x} dx$$
(1.1)

$$= 0 + 2 \int_0^\infty x e^{-x} dx$$
 (1.2)

$$= 2 \left[-xe^{-x} \right]_{0}^{\infty} + 2 \int_{0}^{\infty} e^{-x} dx \qquad (1.3)$$

$$= 0 + 2 \left[-e^{-x} \right]_{0}^{\infty} \tag{1.4}$$

$$= 2$$
 (1.5)

where in equation 1.2 the first term vanishes as x = 0 and $x \to \infty$. In equation 1.3 we apply again the integration by parts with u = x and $v' = e^{-x}$. The first term of the next equation vanishes and we get the result.

Problem 1.7. Solution

We first write the expression for

$$B\Delta C = (B \cup C) - (B \cap C) = [0,4) - (2,3) = [0,2] \cup [3,4)$$

Now

$$A - (B\Delta C) = (1,5) - [0,2] \cup [3,4) = (2,3) \cup [4,5)$$

Problem 1.8. Solution

To compute this double sum, we rewrite it in the following form:

	n=0	n = 1	n=2		n = N
m = 0	1	1/2	1/3		1/(N+1)
m = 1		1/2	1/3		1/(N+1)
m=2			1/3		1/(N+1)
÷					:
m = N					1/(N+1)
total =	1	+2*1/2	+3 * 1/3	$+\ldots$	+N*1/(N+1)
=	1	+1	+1		1

Where in the last two rows we sum over all previous rows and columns. This gives

$$\sum_{m=0}^{N} \sum_{n=m}^{N} = N+1$$

Problem 1.9. Solution

$$\min\{A\} = \inf\{A\} = 3$$
$$\max\{A\}: \ does \ not \ exist$$
$$\sup\{A\} = 4.7$$

Problem 1.10. Solution

To show that $\inf(A) = -\sup(B)$, we use the definitions of sup and \inf . Let x be $x = \inf(A)$.

$$\begin{aligned} x &= \inf(A) &\Leftrightarrow \quad \forall \epsilon, \exists y \in A, s.t, x \leq y < x + \epsilon \\ &\Leftrightarrow \quad \forall \epsilon, \exists y \in A, s.t, -x \geq -y > -x - \epsilon \end{aligned}$$

But if $y \in A$ then $-y = z \in B$ and the last equivalence can be written as

$$x = \inf(A) \Leftrightarrow \forall \epsilon, \exists z \in B, s.t, -x \ge z > -x - \epsilon$$

which implies that $-x = \sup(B)$.

Problem 1.11. Solution

If |a| < 1 then we can write

$$\sum_{n=0}^{\infty} na^n = a \sum_{n=1}^{\infty} na^{n-1} = a \left(\sum_{n=0}^{\infty} a^n\right)'$$
$$= a \left(\frac{1}{1-a}\right)'$$
$$= a \frac{1}{(1-a)^2}$$

Similarly

$$\sum_{n=0}^{\infty} n^2 a^n = a \sum_{n=0}^{\infty} n^2 a^{n-1} = a \left(\sum_{n=0}^{\infty} n a^n\right)'$$
$$= a \left(\frac{a}{(1-a)^2}\right)'$$
$$= a \frac{1-a+2a}{(1-a)^3}$$
$$= \frac{a(a+1)}{(1-a)^3}$$

Problem 1.12. Solution

We will first pick 3 red cars from the 26 red cards and 2 black cards from the 26 blacks, then we will mix them.

There are $\binom{26}{3}$ ways to select 3 red cards form the a deck and $\binom{26}{3}$ ways to select 2 black cards from the 26 black cards.

Once 5 cards have been selected, there are $\binom{5}{3}$ ways to mix them together.

Finally we have $\binom{26}{3}\binom{26}{2}\binom{5}{3}$ ways to select 5 cards with 3 red cards from a deck of 52 cards.

Problem 1.13. Solution

We will show that $\sup(A)$ exists by explicitly computing it. Define

$$B = \{x | x \ge y, \forall y \in A \text{ and } x \le b\}$$

Note that this set is not empty because $b \in B$. Furthermore, B is a closed set, so it admits a minimum which is equal to its inf (call it b_0). Now we want to show that $\sup(A) = b_0$. By definition we have that $b_0 \ge y$ for all $y \in A$, and $b_0 \le b$. Since b_0 is defined as the $\inf(B)$, we have that for all $\epsilon > 0$, $b_0 - \epsilon \notin B$. But since $b_0 - \epsilon \le b$, the only way for that to be possible is $b_0 - \epsilon < y$ for some $y \in A$. Thus

$$\forall \epsilon > 0, \exists y \in A, s.t. \quad b_0 - \epsilon < y \le b_0$$

which means that $b_0 = \sup(A)$

Problem 1.14. Solution

To derive an expression for the sum, we use the following trick:

$$\sum_{n=0}^{N} a^{n} = 1 + a + a^{2} + \dots + a_{N}$$
$$a \sum_{n=0}^{N} a^{n} = a + a^{2} + \dots + a^{N+1}$$

Now taking the difference of the two equations, and factorizing by $\sum_{n=0}^{N} a^n$ we have

$$(1-a)\sum_{n=0}^{N} a^n = 1 - a^{N+1} \Leftrightarrow \sum_{n=0}^{N} a^n = \frac{1 - a^{N+1}}{1 - a}$$

Problem 1.15. Solution

To show this, we will make use of Problem 13. First let's define the set A as

$$A = \{x_n, n \ge 1\}$$

We know that A is a set of real numbers and a is an upper bound for A. From Problem 13, we can deduce that $x_s = \sup(A)$ exists. Now let's show that

Now let's show that

$$\lim_{n \to \infty} x_n = x_s$$

For that, first notice that x_n is a non-decreasing sequence. Thus if $x_{n_0} > x$, then $x_n > x$ for all $n \ge n_0$. Since $x_s = \sup(A)$, we have

$$\forall \epsilon > 0, \exists x_{\epsilon} \in A, s.t.x_s - \epsilon < x_{\epsilon} \le x_s$$

But x_{ϵ} is one element of the sequence $\{x_n\}$, and can be written $x_{\epsilon} = x_{n_1}$ for some n_1 . Using the fact that the sequence is non-decreasing, we have

$$x_s - \epsilon < x_{n_1} \le x_n \le x_s, \quad \forall n \ge n_1$$

Combining all we have:

$$\forall \epsilon > 0, \exists n_1 > 0, s.t., \forall n \ge n_1, \quad x_s - \epsilon < x_n \le x_s$$

which means that $x_n \to x_s$ as $n \to \infty$.

Problem 1.16. Solution

Let A_n be the set of all sequences of characters of length n. We have $|A_n| = 29^n$ (all letters plus comma, dot, space...and whatever you want!). So A_n is countable.

The set of English sentences of length n is certainly included in A_n , hence the set of all English sentences is included in $\bigcup_n^{infty} A_n$.

But we know from the course note that if A_n are countable for $n \ge 1$, then so is

$$A = \bigcup_{n=1}^{\infty} A_n$$

which ends the proof.