Problem Set 1 - Due Jan, 18

Lecturer: Jean C. Walrand
GSI: Daniel Preda, Assane Gueye

Problem 1.1. Solution

To write the fraction in the form $a+i b$, we proceed as follows:

$$
\begin{aligned}
\frac{1+3 i}{2+i} & =\frac{1+3 i}{2+i} \times \frac{2-i}{2-i} \\
& =\frac{2-i+6 i+3}{(2)^{2}-(i)^{2}} \\
& =\frac{5+5 i}{4+1}=1+i
\end{aligned}
$$

To write it in the form $r \times e^{i \theta}$ we notice that

$$
\begin{aligned}
1+i & =\sqrt{2}\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right) \\
& =\sqrt{2}\left(\cos \left(\frac{\pi}{4}\right)+\sin \left(\frac{\pi}{4}\right)\right) \\
& =\sqrt{2} e^{i \frac{\pi}{4}}
\end{aligned}
$$

Problem 1.2. Solution

We first verify that

$$
\sum_{k=1}^{1} k^{3}=1=\left(\sum_{k=1}^{1} k\right)^{2}
$$

Thus the equality is true for $n=1$.
Now assume that it is true for $n-1$ i.e.

$$
\sum_{k=1}^{n-1} k^{3}=\left(\sum_{k=1}^{n-1} k\right)^{2}
$$

and let's show that it is true for n i.e

$$
\sum_{k=1}^{n} k^{3}=\left(\sum_{k=1}^{n} k\right)^{2}
$$

We have that

$$
\sum_{k=1}^{n} k^{3}=\sum_{k=1}^{n-1} k^{3}+n^{3}
$$

Using the hypothesis that the equality is true for $n-1$, we can write

$$
\sum_{k=1}^{n} k^{3}=\left(\sum_{k=1}^{n-1} k\right)^{2}+n^{3}
$$

But we know that

$$
\left(\sum_{k=1}^{n-1} k\right)^{2}=\left(\frac{n(n-1)}{2}\right)^{2}
$$

Thus

$$
\begin{aligned}
\sum_{k=1}^{n} k^{3} & =\left(\frac{n(n-1)}{2}\right)^{2}+n^{3} \\
& =n^{2}\left(\frac{n^{2}-2 n+1}{4}+n\right) \\
& =n^{2}\left(\frac{n^{2}-2 n+1+4 n}{4}\right) \\
& =n^{2}\left(\frac{n^{2}+2 n+1}{4}\right) \\
& =\frac{n^{2}(n+1)^{2}}{4} \\
& =\left(\frac{n(n+1)}{2}\right)^{2} \\
& =\left(\sum_{k=1}^{n} k\right)^{2}
\end{aligned}
$$

Problem 1.3. Solution

One example of such function is

$$
f(x)= \begin{cases}(\sqrt{2})^{-\frac{1}{x}} & x \in(0,0.5] \\ 1-(\sqrt{2})^{-\frac{1}{1-x}} & x \in(0.5,1)\end{cases}
$$

The function f is strictly increasing and

$$
\lim _{x \rightarrow 0} f(x)=0 \quad \lim _{x \rightarrow 1} f(x)=1
$$

Thus

$$
\inf _{x \in(0,1)} f(x)=0 \quad \sup _{x \in(0,1)} f(x)=1
$$

But $f(\cdot)$ does not have a maximum or a minimum in $(0,1)$.
A plot of this function is shown is Figure 1.1

Figure 1.1. Plot of the function defined in exercise 3

Problem 1.4. Solution

To compute the integral, we use a small trick.

$$
\begin{aligned}
\int_{0}^{1} \frac{x+1}{x+2} d x & =\int_{0}^{1} \frac{x+1+1-1}{x+2} d x \\
& =\int_{0}^{1}\left(1+\frac{1}{x+2}\right) d x \\
& =x]_{0}^{1}-\int_{0}^{1} \frac{1}{x+2} d x \\
& =1-[\log (x+2)]_{0}^{1} \\
& =1-\log (3)+\log (2)
\end{aligned}
$$

Problem 1.5. Solution

1. $0 \in(0,1)$, False
2. $0 \subset(-1,3)$, True
3. $(0,1) \cup(1,2)=(0,2)$, False
4. The set of integers is uncountable, False

Problem 1.6. Solution

To compute the integral, we use integration by parts.
Consider $u=x^{2}$ and $v^{\prime}=e^{-x}$, we can rewrite the integral as (taking $u^{\prime}=2 x$ and $v=-e^{-x}$):

$$
\begin{align*}
\int_{0}^{\infty} x^{2} e^{-x} d x & =\left[-x^{2} e^{-x}\right]_{0}^{\infty}+2 \int_{0}^{\infty} x e^{-x} d x \tag{1.1}\\
& =0+2 \int_{0}^{\infty} x e^{-x} d x \tag{1.2}\\
& =2\left[-x e^{-x}\right]_{0}^{\infty}+2 \int_{0}^{\infty} e^{-x} d x \tag{1.3}\\
& =0+2\left[-e^{-x}\right]_{0}^{\infty} \tag{1.4}\\
& =2 \tag{1.5}
\end{align*}
$$

where in equation 1.2 the first term vanishes as $x=0$ and $x \rightarrow \infty$. In equation 1.3 we apply again the integration by parts with $u=x$ and $v^{\prime}=e^{-x}$. The first term of the next equation vanishes and we get the result.

Problem 1.7. Solution

We first write the expression for

$$
B \Delta C=(B \cup C)-(B \cap C)=[0,4)-(2,3)=[0,2] \cup[3,4)
$$

Now

$$
A-(B \Delta C)=(1,5)-[0,2] \cup[3,4)=(2,3) \cup[4,5)
$$

Problem 1.8. Solution

To compute this double sum, we rewrite it in the following form:

	$n=0$	$n=1$	$n=2$	\ldots	$n=N$
$m=0$	1	$1 / 2$	$1 / 3$	\cdots	$1 /(N+1)$
$m=1$		$1 / 2$	$1 / 3$	\cdots	$1 /(N+1)$
$m=2$			$1 / 3$	\cdots	$1 /(N+1)$
\vdots					\vdots
$m=N$					$1 /(N+1)$
total $=$	1	$+2 * 1 / 2$	$+3 * 1 / 3$	$+\ldots$	$+N * 1 /(N+1)$
$=$	1	+1	+1	\cdots	1

Where in the last two rows we sum over all previous rows and columns.
This gives

$$
\sum_{m=0}^{N} \sum_{n=m}^{N}=N+1
$$

Problem 1.9. Solution

$$
\begin{aligned}
& \min \{A\}=\inf \{A\}=3 \\
& \max \{A\}: \text { does not exist } \\
& \sup \{A\}=4.7
\end{aligned}
$$

Problem 1.10. Solution

To show that $\inf (A)=-\sup (B)$, we use the definitions of sup and inf. Let x be $x=\inf (A)$.

$$
\begin{aligned}
x=\inf (A) & \Leftrightarrow \forall \epsilon, \exists y \in A, \text { s.t, } x \leq y<x+\epsilon \\
& \Leftrightarrow \forall \epsilon, \exists y \in A, \text { s.t, }-x \geq-y>-x-\epsilon
\end{aligned}
$$

But if $y \in A$ then $-y=z \in B$ and the last equivalence can be written as

$$
x=\inf (A) \Leftrightarrow \forall \epsilon, \exists z \in B, \text { s.t, }-x \geq z>-x-\epsilon
$$

which implies that $-x=\sup (B)$.

Problem 1.11. Solution

If $|a|<1$ then we can write

$$
\begin{aligned}
\sum_{n=0}^{\infty} n a^{n}=a \sum_{n=1}^{\infty} n a^{n-1} & =a\left(\sum_{n=0}^{\infty} a^{n}\right)^{\prime} \\
& =a\left(\frac{1}{1-a}\right)^{\prime} \\
& =a \frac{1}{(1-a)^{2}}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\sum_{n=0}^{\infty} n^{2} a^{n}=a \sum_{n=0}^{\infty} n^{2} a^{n-1} & =a\left(\sum_{n=0}^{\infty} n a^{n}\right)^{\prime} \\
& =a\left(\frac{a}{(1-a)^{2}}\right)^{\prime} \\
& =a \frac{1-a+2 a}{(1-a)^{3}} \\
& =\frac{a(a+1)}{(1-a)^{3}}
\end{aligned}
$$

Problem 1.12. Solution

We will first pick 3 red cars from the 26 red cards and 2 black cards from the 26 blacks, then we will mix them.
There are $\binom{26}{3}$ ways to select 3 red cards form the a deck and $\binom{26}{3}$ ways to select 2 black cards from the 26 black cards.
Once 5 cards have been selected, there are $\binom{5}{3}$ ways to mix them together.
Finally we have $\binom{26}{3}\binom{26}{2}\binom{5}{3}$ ways to select 5 cards with 3 red cards from a deck of 52 cards.

Problem 1.13. Solution

We will show that $\sup (A)$ exists by explicitly computing it.
Define

$$
B=\{x \mid x \geq y, \forall y \in A \quad \text { and } \quad x \leq b\}
$$

Note that this set is not empty because $b \in B$. Furthermore, B is a closed set, so it admits a minimum which is equal to its inf (call it b_{0}). Now we want to show that $\sup (A)=b_{0}$.
By definition we have that $b_{0} \geq y$ for all $y \in A$, and $b_{0} \leq b$. Since b_{0} is defined as the $\inf (B)$, we have that for all $\epsilon>0, b_{0}-\epsilon \notin B$. But since $b_{0}-\epsilon \leq b$, the only way for that to be possible is $b_{0}-\epsilon<y$ for some $y \in A$. Thus

$$
\forall \epsilon>0, \exists y \in A \text {, s.t. } \quad b_{0}-\epsilon<y \leq b_{0}
$$

which means that $b_{0}=\sup (A)$

Problem 1.14. Solution

To derive an expression for the sum, we use the following trick:

$$
\begin{aligned}
\sum_{n=0}^{N} a^{n} & =1+a+a^{2}+\cdots+a_{N} \\
a \sum_{n=0}^{N} a^{n} & =a+a^{2}+\cdots+a^{N+1}
\end{aligned}
$$

Now taking the difference of the two equations, and factorizing by $\sum_{n=0}^{N} a^{n}$ we have

$$
(1-a) \sum_{n=0}^{N} a^{n}=1-a^{N+1} \Leftrightarrow \sum_{n=0}^{N} a^{n}=\frac{1-a^{N+1}}{1-a}
$$

Problem 1.15. Solution

To show this, we will make use of Problem 13.
First let's define the set A as

$$
A=\left\{x_{n}, n \geq 1\right\}
$$

We know that A is a set of real numbers and a is an upper bound for A. From Problem 13, we can deduce that $x_{s}=\sup (A)$ exists.
Now let's show that

$$
\lim _{n \rightarrow \infty} x_{n}=x_{s}
$$

For that, first notice that x_{n} is a non-decreasing sequence. Thus if $x_{n_{0}}>x$, then $x_{n}>x$ for all $n \geq n_{0}$. Since $x_{s}=\sup (A)$, we have

$$
\forall \epsilon>0, \exists x_{\epsilon} \in A \text {, s.t. } x_{s}-\epsilon<x_{\epsilon} \leq x_{s}
$$

But x_{ϵ} is one element of the sequence $\left\{x_{n}\right\}$, and can be written $x_{\epsilon}=x_{n_{1}}$ for some n_{1}. Using the fact that the sequence is non-decreasing, we have

$$
x_{s}-\epsilon<x_{n_{1}} \leq x_{n} \leq x_{s}, \quad \forall n \geq n_{1}
$$

Combining all we have:

$$
\forall \epsilon>0, \exists n_{1}>0, \text { s.t., } \forall n \geq n_{1}, \quad x_{s}-\epsilon<x_{n} \leq x_{s}
$$

which means that $x_{n} \rightarrow x_{s}$ as $n \rightarrow \infty$.

Problem 1.16. Solution

Let A_{n} be the set of all sequences of characters of length n. We have $\left|A_{n}\right|=29^{n}$ (all letters plus comma, dot, space...and whatever you want!). So A_{n} is countable.
The set of English sentences of length n is certainly included in A_{n}, hence the set of of all English sentences is included in $\cup_{n}^{\text {infty }} A_{n}$.
But we know from the course note that if A_{n} are countable for $n \geq 1$, then so is

$$
A=\cup_{n}^{\infty} A_{n}
$$

which ends the proof.

