EE126: Probability and Random Processes

Problem Set 2 - Due Feb, 1

Lecturer: Jean C. Walrand
GSI: Daniel Preda, Assane Gueye

Exercise 2.1. Pick 3 balls from an urn containing 15 balls (7 red balls, 5 blue balls, and 3 greens balls). Specify the probability space for this experiment.

Exercise 2.2. A part selected for testing is equally likely to have been produced on any one of six cutting tools.

- What is the sample space?
- What is the probability that the part is from tool 1?
- What is the probability that the part is from tool 1 or tool 3?
- What is the probability that the part is not from tool 5 ?

Exercise 2.3. Let A and B be two events. Use the axioms of probability to prove the following:

1. $P(A \cap B) \geq P(A)+P(B)-1$
2. Show that the probability that one and only one of the events A or B occurs is $P(A)+$ $P(B)-2 \cdot P(A \cap B)$.

Exercise 2.4. Measurements of the time needed to complete a chemical reaction might me modeled with the sample space $S=R^{+}$, the set of positive real numbers. Let

$$
E_{1}=\{x \mid 1 \leq x \leq 10\} \quad \text { and } \quad E_{2}=\{x \mid 3 \leq x \leq 118\}
$$

Write the expressions for

$$
E_{1} \cup E_{2}, \quad E_{1} \cap E_{2}, \quad E_{1} \Delta E_{2}
$$

Exercise 2.5. Consider two events, X_{1} and X_{2}. Prove the following identities:

1. $P\left(X_{1} \cap X_{2}\right) \leq P\left(X_{1}\right)$
2. $P\left(X_{1}\right) \leq P\left(X_{1} \cup X_{2}\right)$
3. $P\left(X_{1} \cup X_{2}\right) \leq P\left(X_{1}\right)+P\left(X_{2}\right)$

Exercise 2.6. Twenty distinct cars park in the same parking lot everyday. Ten of these cars are US-made, while the other ten are foreign-made. This parking lot has exactly twenty spaces, and all are in a row, so the cars park side by side each day. The drivers have different schedules on any given day, however, so the position any car might take on a certain day is random.

1. In how many different ways can the cars line up?
2. What is the probability that on a given day, the cars will park in such a way that they alternate (e.g., US-made, foreign-made, US-made, foreign-made, etc)?

Exercise 2.7. Bob has a peculiar pair of four-sided dice. When he rolls the dice, the probability of any particular outcome is proportional to the sum of the outcome of each die. All outcomes that result in a particular sum are equally likely.

1. What is the probability of the sum being even?
2. What is the probability of Bob rolling a 4 and a 1?

Exercise 2.8. A baseball pitcher, Bill, has good control of his pitches. He always throws his pitches inside the "box" which we consider to be a 2 by 2 square. He throws the pitches uniformly over the square (i.e. the probability of a pitch falling within an area of the square is proportional to this area.) Let $(0,0)$ and $(2,2)$ be the coordinates of the lower-left corner and the upper-right corner of the square, respectively as shown below.

Two groups A and B of fans are betting on where Bill's next pitch will fall. Among group A,

- person 1 bets that the pitch is going to be in the left half part of the square, i.e. $0 \leq x \leq 1$.
- person 2 bets that it will be in one third of the square from the left, i.e. $0 \leq x \leq \frac{2}{3}$.
- and in general, person n makes the bet that the pitch will fall in the area $0 \leq x \leq$ $2 /(n+1)$.

1. What is the probability that individual n from group A wins his bet?
2. What is the probability that individual n wins but not individual $n+1$?

Among group B, that fans bet in a similar fashion, but on the height of the pitch, i.e. individual n bets that the next pitch will fall in the area $0 \leq y \leq 2 /(n+1)$.
(c) What is the probability that individuals 1 through n of both groups win their bets?
(d) When n goes to infinity, what is the probability that all fans of both groups win their bets? Note: Be precise in your derivation.

