Department of EECS - University of California at Berkeley

EECS 126 - Probability and Random Processes - Spring 2007
Midterm 2: 4/03/2007

SOLUTIONS

1. (20%)

The random variables X, Y are independent. X is uniformly distributed in $[0,1]$ and Y is exponentially distributed with mean 1 , so that $P(Y>y)=e^{-y}$ for $y \geq 0$. Let $Z=\min \{X, Y\}$. Calculate the mean and the variance of Z.
Hint: You may need the following intermediate results. Let $a_{n}=\int_{0}^{1} x^{n} e^{-x} d x$ for $n \geq 0$. One finds that $a_{0}=1-e^{-1}, a_{1}=1-2 e^{-1}, a_{2}=2-5 e^{-1}, a_{3}=6-16 e^{-1}$.

We have $P(Z>x)=P(X>x, Y>x)=P(X>x) P(Y>x)=(1-x) e^{-x}$ for $x \in[0,1]$. The density f_{Z} of Z is thus given by

$$
f_{Z}(x)=-\frac{d}{d x} P(Z>x)=e^{-x}+(1-x) e^{-x}=2 e^{-x}-x e^{-x}, \text { for } 0 \leq x \leq 1 .
$$

Now,
$E(Z)=\int_{0}^{1} x f_{Z}(x) d x=2 \int_{0}^{1} x e^{-x} d x-\int_{0}^{1} x^{2} e^{-x} d x=2 a_{1}-a_{2}=2-4 e^{-1}-\left[2-5 e^{-1}\right]=e^{-1} \approx 0.37$
and

$$
\begin{aligned}
E\left(Z^{2}\right) & =\int_{0}^{1} x^{2} f_{Z}(x) d x=2 \int_{0}^{1} x^{2} e^{-x} d x-\int_{0}^{1} x^{3} e^{-x} d x=2 a_{2}-a_{3}=2\left[2-5 e^{-1}\right]-\left[6-16 e^{-1}\right] \\
& =-2+6 e^{-1},
\end{aligned}
$$

so that

$$
\operatorname{var}(Z)=-2+6 e^{-1}-e^{-2} \approx 0.07
$$

2. (15%)

The random variables X and Y are as in Problem 1.
a) Calculate $f_{V}(v)$ where $V=X+Y$.
b) Calculate $E(V)$ and $\operatorname{var}(V)$.
a) To find the density of V we note that, if $v<1$, then
$P(V>v)=P(X>v)+\int_{0}^{v} f_{X}(x) P(Y>v-x) d x=1-v+\int_{0}^{v} e^{x-v} d x=1-v+\left(1-e^{-v}\right)=2-v-e^{-v}$.
Also, if $v>1$,

$$
P(V>v)=\int_{0}^{1} f_{X}(x) P(Y>v-x) d x=\int_{0}^{1} e^{x-v} d x=e^{-v}[e-1] .
$$

We find the density of V by differentiating and we get

$$
f_{V}(v)=\left\{\begin{array}{l}
1-e^{-v}, \text { for } v \leq 1 \\
e^{-v}(e-1), \text { for } v>1
\end{array}\right.
$$

b) We find

$$
E(V)=E(X)+E(Y)=\frac{1}{2}+1=1.5
$$

and

$$
\operatorname{var}(V)=\operatorname{var}(X)+\operatorname{var}(Y)=E\left(X^{2}\right)-E(X)^{2}+E\left(Y^{2}\right)-E\left(Y^{2}\right)=\frac{1}{3}-\frac{1}{4}+2-1=\frac{13}{12}
$$

since

$$
E\left(Y^{2}\right)=\int_{0}^{\infty} y^{2} e^{-y} d y=-\int_{0}^{\infty} y^{2} d e^{-y}=\int_{0}^{\infty} 2 y e^{-y} d y=2
$$

3. (15%)

Let X_{1}, X_{2}, X_{3} be independent $N(0,1)$ random variables. Calculate $E\left[X_{1} \mid 2 X_{1}+X_{2}, X_{2}+3 X_{3}\right]$.

With $X=X_{1}, Y_{1}=2 X_{1}+X_{2}, Y_{2}=X_{2}+3 X_{3}$, and $\mathbf{Y}=\left(Y_{1}, Y_{2}\right)^{T}$, we find

$$
\Sigma_{X \mathbf{Y}}=E\left[X\left(Y_{1}, Y_{2}\right)\right]=[2,0],
$$

and

$$
\Sigma \mathbf{Y}=E\left[\mathbf{Y} \mathbf{Y}^{T}\right]=\left[\begin{array}{cc}
5 & 1 \\
1 & 10
\end{array}\right]
$$

Hence,

$$
\begin{aligned}
& E\left[X_{1} \mid 2 X_{1}+X_{2}, X_{2}+3 X_{3}\right]=E[X \mid \mathbf{Y}]=\Sigma_{X \mathbf{Y}} \Sigma_{\mathbf{Y}}^{-1} \mathbf{Y} \\
& \quad=[2,0]\left[\begin{array}{cc}
5 & 1 \\
1 & 10
\end{array}\right]^{-1} \mathbf{Y}=[2,0] \frac{1}{49}\left[\begin{array}{cc}
10 & -1 \\
-1 & 5
\end{array}\right] \mathbf{Y}=\frac{1}{49}[20,-2] \mathbf{Y}=\frac{1}{49}\left[20 Y_{1}-2 Y_{2}\right] .
\end{aligned}
$$

4. (20%)

The random variables X, Z_{1}, Z_{2}, \ldots are independent; X is $N\left(0, \sigma^{2}\right)$ and $Z_{n}=N\left(0, u^{2}\right)$ for $n \geq 1$. Let $\hat{X}_{n}=E\left[X \mid Y_{1}, \ldots, Y_{n}\right]$ where $Y_{k}=X+Z_{k}, k=1, \ldots, n$. You must choose the number n of measurements so that $P\left(\left|X-\hat{X}_{n}\right|>0.1\right)<5 \%$.
a) Find \hat{X}_{n}.
b) Use Chebyshev's inequality to estimate the smallest value of n you should use if $\sigma^{2}=4, u^{2}=1$ so that $P\left(\left|X-\hat{X}_{n}\right|>0.1\right)<5 \%$.
c) Use the Gaussian distribution to estimate the smallest value of n you should use if $\sigma^{2}=4, u^{2}=$ 1 so that $P\left(\left|X-\hat{X}_{n}\right|>0.1\right)<5 \%$.
Note: Here are some potentially useful values: $P(|N(0,1)|>1.64)=10 \%, P(|N(0,1)|>1.96)=$ $5 \%, P(|N(0,1)|>2.58)=1 \%$.
a) We know, by symmetry, that

$$
\hat{X}_{n}=a\left(Y_{1}+\cdots+Y_{n}\right) .
$$

Also, a should be such that $X-\hat{X}_{n}$ is orthogonal to each Y_{k}. Writing that $X-\hat{X}_{n} \perp Y_{1}$ we find

$$
0=E\left(\left(X-a\left(n X+Z_{1}+\cdots+Z_{n}\right)\right)\left(X+Z_{1}\right)\right)=(1-a n) \sigma^{2}-a u^{2}
$$

so that

$$
a=\frac{\sigma^{2}}{u^{2}+n \sigma^{2}} .
$$

b) We find that

$$
\begin{aligned}
& E\left((X-\hat{X})^{2}\right)=\operatorname{var}\left((1-a n) X-a Z_{1}-\cdots-a Z_{n}\right)=(1-a n)^{2} \sigma^{2}+n a^{2} u^{2} \\
& \quad=\frac{u^{4} \sigma^{2}}{\left(u^{2}+n \sigma^{2}\right)^{2}}+\frac{n u^{2} \sigma^{4}}{\left(u^{2}+n \sigma^{2}\right)^{2}}=\frac{u^{2} \sigma^{2}}{u^{2}+n \sigma^{2}} .
\end{aligned}
$$

Using Chebyshev's inequality, we have

$$
P\left(\left|X-\hat{X}_{n}\right|>\epsilon\right) \leq \frac{E\left((X-\hat{X})^{2}\right)}{\epsilon^{2}}=\frac{u^{2} \sigma^{2}}{\epsilon^{2}\left(u^{2}+n \sigma^{2}\right)}
$$

With $\sigma^{2}=4, u^{2}=1, \epsilon=0.1$, we see that we need

$$
\frac{4}{0.01(1+4 n)} \leq 0.05
$$

which implies $n \geq 2,000$.
c) We know that $X-\hat{X}^{2}=N\left(0, b_{n}^{2}\right)$ where $b_{n}^{2}=\frac{u^{2} \sigma^{2}}{u^{2}+n \sigma^{2}}$. Now,

$$
P\left(\left|N\left(0, b_{n}^{2}\right)\right|>\epsilon\right)=P\left(|N(0,1)|>\frac{\epsilon}{b_{n}}\right) \leq 0.05 \text { if } \frac{\epsilon}{b_{n}} \geq 1.96 .
$$

Hence, we need $\epsilon / b_{n} \geq 1.96$, or $b_{n} \leq \epsilon / 1.96$, or $b_{n}^{2} \leq \epsilon^{2} /(1.96)^{2} \approx \epsilon^{2} / 4$. That is,

$$
\frac{4}{1+4 n} \leq \frac{0.01}{4}
$$

so that $n \geq 400$. The example shows that the Chebyshev estimate is a bit pessimistic.

5. (15%)

Assume that Z_{1}, Z_{2} are independent, zero mean, and with respective variances 1, 4. The random variable X is independent of $\left\{Z_{1}, Z_{2}\right\}$ and is equally likely to be equal to -1 or +1 .
a) Find $\hat{X}=\operatorname{MAP}\left[X \mid X+Z_{1}, X+Z_{2}\right]$.
b) Find $P(\hat{X} \neq X)$.

Hint: Here are some values of $F_{W}(x)$ for $W=N(0,1)$ that you may need:

x	-1.6	-1.5	-1.4	-1.3	-1.2	-1.1	-1.0	-0.9	-0.8	-0.7	-0.6
$F_{W}(x)$	0.055	0.067	0.081	0.097	0.115	0.136	0.159	0.184	0.212	0.242	0.274

a) Let $Y_{1}=X+Z_{1}$ and $Y_{2}=X+Z_{2}$. We find

$$
f_{[\mathbf{Y} \mid X]}[\mathbf{y} \mid 1]=\frac{1}{\sqrt{2 \pi}} e^{-\left(y_{1}-1\right)^{2} / 2} \frac{1}{\sqrt{2 \pi 4}} e^{-\left(y_{2}-1\right)^{2} / 8}
$$

and

$$
f_{[\mathbf{Y} \mid X]}[\mathbf{y} \mid-1]=\frac{1}{\sqrt{2 \pi}} e^{-\left(y_{1}+1\right)^{2} / 2} \frac{1}{\sqrt{2 \pi 4}} e^{-\left(y_{2}+1\right)^{2} / 8}
$$

Hence,

$$
L(\mathbf{y})=\frac{f_{[\mathbf{Y} \mid X]}[\mathbf{y} \mid 1]}{f_{[\mathbf{Y} \mid X]}[\mathbf{y} \mid-1]}=\exp \left\{2 y_{1}+\frac{1}{2} y_{2}\right\} .
$$

Accordingly,

$$
M A P[X \mid \mathbf{Y}]=\left\{\begin{array}{l}
1, \text { if } 2 Y_{1}+\frac{1}{2} Y_{2}>0 \\
-1, \text { otherwise }
\end{array}\right.
$$

b) By symmetry,

$$
P(\hat{X} \neq X)=P[\hat{X}=+1 \mid X=-1]=P\left[\left.2 Y_{1}+\frac{1}{2} Y_{2}>0 \right\rvert\, X=-1\right] .
$$

Now, if $X=-1,2 Y_{1}+\frac{1}{2} Y_{2}=N\left(-2.5,4+\frac{1}{4} \times 4=5\right)$. Also,

$$
P(N(-2.5,5)>0)=P\left(N(0,1)>\frac{2.5}{\sqrt{5}}\right)=P(N(0,1)>1.12) \approx 0.13,
$$

according to the values given in the table.
6. (15%)

Can you find two random variables X, Y such that $E[X \mid Y]>Y$ and $E[Y \mid X]>X$? Either give an example or prove that it is not possible.

We cannot find such random variables because $E[X \mid Y]>Y$ implies, by taking expectation, $E(X)>E(Y)$ whereas $E[Y \mid X]>X$ implies $E(Y)>E(X)$.

