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SOLUTIONS

1. (25%)

Let X, Y, Z be i.i.d. N(0, 1).

a) Show that X + Y and (X − Y )2 are independent;

b) Calculate E[X + Y |X + 2Y, Y − Z];

c) Calculate MLE[X|X + Y, X + Z].

a) We first note that X + Y ⊥ X − Y since cov(X + Y, X − Y ) = E((X + Y )(X − Y )) =
E(X2) − E(Y 2) = 0. Since X + Y and X − Y are jointly Gaussian, this implies that these
random variables are independent. Consequently, X + Y and (X − Y )2 are independent.

b) Let U = X + Y, V1 = X + 2Y, V2 = X − Z, and V = (V1, V2)T . Then

E[U |V] = E(UVT ][E(VVT )]−1V = [3, 1]

[
5 2
2 2

]−1

V = [3, 1]
1
6

[
2 −2
−2 5

]
V =

1
6
[4,−1]V.

Hence,

E[X + Y |X + 2Y, Y − Z] =
4
6
(X + 2Y )− 1

6
(Y − Z).

c) Let W1 = X + Y, W2 = X + Z, and W = (W1,W2)T . Then

fW|X [w|x] =
1
2π

exp{−(w1 − x)2/2− (w2 − x)2/2}.

We know that MLE[X|W = w] = argmaxxfW|X [w|x]. That is, the MLE is the minimizer of

g(x) =
1
2
(w1 − x)2 +

1
2
(w2 − x)2.

Writing that the derivative of g(x) with respect to x is equal to zero, we find

(w1 − x) + (w2 − x) = 0,

so that x = (w1 + w2)/2. Hence,

MLE[X|X + Y, X + Z] =
1
2
{(X + Y ) + (X + Z)}.
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2. (25%)

Let X, Y be independent and exponentially distributed with mean 1. Let Z = X + 2Y .

a) Calculate fX,Z(x, z);

b) Calculate fZ(z);

c) Calculate fX|Z [x|z];

d) Calculate E[X|Z].

a) We have

fX,Z(x, z) =
1
2
fX,Y (x, (z − x)/2) =

1
2

exp{−x− (z − x)/2} =
1
2

exp{−(x + z)/2} for 0 ≤ x ≤ z.

b) We find

fZ(z) =
∫ z

0
fX,Z(x, z)dx = e−z/2 − e−z.

c)

fX|Z [x|z] =
fX,Z(x, z)

fZ(z)
=

1
2

e−(x+z)/2

e−z/2 − e−z
=

e−x/2

2(1− e−z/2)
for 0 ≤ x ≤ z.

d) We know that

E[X|Z = z] =
∫ z

0
xfX|Z [x|z]dx =

1
2(1− e−z/2)

∫ z

0
xe−x/2dx.

Now,∫ z

0
xe−x/2dx = −2

∫ z

0
xde−x/2 = −2[xe−x/2]z0+2

∫ z

0
e−x/2dx = −2ze−z/2−4[e−x/2]z0 = 4(1−e−z/2)−2ze−z/2.

Finally,

E[X|Z = z] =
4(1− e−z/2)− 2ze−z/2

2(1− e−z/2)
= 2− ze−z/2

1− e−z/2
.
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3. (25%)

Let X,Y be random vectors defined on some common probability space.

a) Show that if they are jointly Gaussian, then X ⊥ Y implies X ⊥ h(Y) for all function h(.).

b) Show, by a counterexample, that the above fact does not hold in general if the random vectors
are not jointly Gaussian.

a) Assume that X,Y are jointly Gaussian and X ⊥ Y. Then X and Y are independent. Conse-
quently, X and h(Y) are independent for any function h(.). Therefore, X ⊥ h(Y).

b) There are many counterexamples, of course. Here is one. Let Y be N(0, 1), X = Y 2, and
h(Y ) = Y 2. Then X ⊥ Y since E(XY ) = E(Y 3) = 0 = E(X)E(Y ) because E(Y ) = 0. Also,
X 6 ⊥h(Y ) since E(Xh(Y )) = E(Y 4) = 3 6= E(X)E(h(Y )) = E(Y 2)E(Y 2) = 1.
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4. (25%)

Let X be N(0, 1) and Z be N(0, I) variables in <n, v a vector in <n, and A a nonsingular matrix
in <n×n.

a) Find an expression for σ2 := E((X − E[X|vX + Z])2);

b) Calculate σ2 for v = [β, 0, 0, . . . , 0]T and designate the resulting value by g(β2);

c) Argue, using symmetry, that for a general vector v one has σ2 = g(||v||2);
d) Show that E((X − E[X|vX + AZ])2) is decreasing in ||A−1v||2.

a) We know that

σ2 = E((X − E[X|Y])2) = 1− ΣX,YΣ−1
Y ΣY,X = 1− vT [vvT + I]−1v.

b) Let v = [β, 0, 0, . . . , 0]T . Then

σ2 = 1− [β, 0, . . . , 0]diag(1 + β2, 1, . . . , 1)−1[β, 0, . . . , 0]T = 1− β2

1 + β2
=

1
1 + β2

=: g(β2).

c) Since the distribution of Z is invariant under rotation, we can always rotate the axes so that
v = [β, 0, 0, . . . , 0]T where β2 = ||v||2.
d)

Let U = vX + AZ. Since A is nonsingular, observing U is the same as observing T := A−1U =
A−1v + Z. Consequently,

E((X − E[X|U])2) = E((X − E[X|T ])2) = g(||A−1v||2)

and g(·) is decreasing.
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