Department of EECS - University of California at Berkeley

EECS 126 - Probability and Random Processes - Spring 2007
Midterm 2': 4/19/2007

SOLUTIONS

1. (25%)

Let X, Y, Z be i.i.d. $\mathrm{N}(0,1)$.
a) Show that $X+Y$ and $(X-Y)^{2}$ are independent;
b) Calculate $E[X+Y \mid X+2 Y, Y-Z]$;
c) Calculate $M L E[X \mid X+Y, X+Z]$.
a) We first note that $X+Y \perp X-Y$ since $\operatorname{cov}(X+Y, X-Y)=E((X+Y)(X-Y))=$ $E\left(X^{2}\right)-E\left(Y^{2}\right)=0$. Since $X+Y$ and $X-Y$ are jointly Gaussian, this implies that these random variables are independent. Consequently, $X+Y$ and $(X-Y)^{2}$ are independent.
b) Let $U=X+Y, V_{1}=X+2 Y, V_{2}=X-Z$, and $\mathbf{V}=\left(V_{1}, V_{2}\right)^{T}$. Then

$$
E[U \mid \mathbf{V}]=E\left(U \mathbf{V}^{T}\right]\left[E\left(\mathbf{V} \mathbf{V}^{T}\right)\right]^{-1} \mathbf{V}=[3,1]\left[\begin{array}{cc}
5 & 2 \\
2 & 2
\end{array}\right]^{-1} \mathbf{V}=[3,1] \frac{1}{6}\left[\begin{array}{cc}
2 & -2 \\
-2 & 5
\end{array}\right] \mathbf{V}=\frac{1}{6}[4,-1] \mathbf{V}
$$

Hence,

$$
E[X+Y \mid X+2 Y, Y-Z]=\frac{4}{6}(X+2 Y)-\frac{1}{6}(Y-Z)
$$

c) Let $W_{1}=X+Y, W_{2}=X+Z$, and $\mathbf{W}=\left(W_{1}, W_{2}\right)^{T}$. Then

$$
f_{\mathbf{W} \mid X}[\mathbf{w} \mid x]=\frac{1}{2 \pi} \exp \left\{-\left(w_{1}-x\right)^{2} / 2-\left(w_{2}-x\right)^{2} / 2\right\}
$$

We know that $M L E[X \mid \mathbf{W}=\mathbf{w}]=\operatorname{argmax}_{x} f_{\mathbf{W} \mid X}[\mathbf{w} \mid x]$. That is, the MLE is the minimizer of

$$
g(x)=\frac{1}{2}\left(w_{1}-x\right)^{2}+\frac{1}{2}\left(w_{2}-x\right)^{2}
$$

Writing that the derivative of $g(x)$ with respect to x is equal to zero, we find

$$
\left(w_{1}-x\right)+\left(w_{2}-x\right)=0
$$

so that $x=\left(w_{1}+w_{2}\right) / 2$. Hence,

$$
M L E[X \mid X+Y, X+Z]=\frac{1}{2}\{(X+Y)+(X+Z)\}
$$

2. (25%)

Let X, Y be independent and exponentially distributed with mean 1 . Let $Z=X+2 Y$.
a) Calculate $f_{X, Z}(x, z)$;
b) Calculate $f_{Z}(z)$;
c) Calculate $f_{X \mid Z}[x \mid z]$;
d) Calculate $E[X \mid Z]$.
a) We have

$$
f_{X, Z}(x, z)=\frac{1}{2} f_{X, Y}(x,(z-x) / 2)=\frac{1}{2} \exp \{-x-(z-x) / 2\}=\frac{1}{2} \exp \{-(x+z) / 2\} \text { for } 0 \leq x \leq z
$$

b) We find

$$
f_{Z}(z)=\int_{0}^{z} f_{X, Z}(x, z) d x=e^{-z / 2}-e^{-z} .
$$

c)

$$
f_{X \mid Z}[x \mid z]=\frac{f_{X, Z}(x, z)}{f_{Z}(z)}=\frac{1}{2} \frac{e^{-(x+z) / 2}}{e^{-z / 2}-e^{-z}}=\frac{e^{-x / 2}}{2\left(1-e^{-z / 2}\right)} \text { for } 0 \leq x \leq z .
$$

d) We know that

$$
E[X \mid Z=z]=\int_{0}^{z} x f_{X \mid Z}[x \mid z] d x=\frac{1}{2\left(1-e^{-z / 2}\right)} \int_{0}^{z} x e^{-x / 2} d x
$$

Now,
$\int_{0}^{z} x e^{-x / 2} d x=-2 \int_{0}^{z} x d e^{-x / 2}=-2\left[x e^{-x / 2}\right]_{0}^{z}+2 \int_{0}^{z} e^{-x / 2} d x=-2 z e^{-z / 2}-4\left[e^{-x / 2}\right]_{0}^{z}=4\left(1-e^{-z / 2}\right)-2 z e^{-z / 2}$.
Finally,

$$
E[X \mid Z=z]=\frac{4\left(1-e^{-z / 2}\right)-2 z e^{-z / 2}}{2\left(1-e^{-z / 2}\right)}=2-\frac{z e^{-z / 2}}{1-e^{-z / 2}}
$$

3. (25%)

Let \mathbf{X}, \mathbf{Y} be random vectors defined on some common probability space.
a) Show that if they are jointly Gaussian, then $\mathbf{X} \perp \mathbf{Y}$ implies $\mathbf{X} \perp h(\mathbf{Y})$ for all function $h($.$) .$
b) Show, by a counterexample, that the above fact does not hold in general if the random vectors are not jointly Gaussian.
a) Assume that \mathbf{X}, \mathbf{Y} are jointly Gaussian and $\mathbf{X} \perp \mathbf{Y}$. Then \mathbf{X} and \mathbf{Y} are independent. Consequently, \mathbf{X} and $h(\mathbf{Y})$ are independent for any function $h($.$) . Therefore, \mathbf{X} \perp h(\mathbf{Y})$.
b) There are many counterexamples, of course. Here is one. Let Y be $N(0,1), X=Y^{2}$, and $h(Y)=Y^{2}$. Then $X \perp Y$ since $E(X Y)=E\left(Y^{3}\right)=0=E(X) E(Y)$ because $E(Y)=0$. Also, $X \not \perp h(Y)$ since $E(X h(Y))=E\left(Y^{4}\right)=3 \neq E(X) E(h(Y))=E\left(Y^{2}\right) E\left(Y^{2}\right)=1$.

4. (25%)

Let X be $N(0,1)$ and \mathbf{Z} be $N(0, I)$ variables in \Re^{n}, \mathbf{v} a vector in \Re^{n}, and A a nonsingular matrix in $\Re^{n \times n}$.
a) Find an expression for $\sigma^{2}:=E\left((X-E[X \mid \mathbf{v} X+\mathbf{Z}])^{2}\right)$;
b) Calculate σ^{2} for $\mathbf{v}=[\beta, 0,0, \ldots, 0]^{T}$ and designate the resulting value by $g\left(\beta^{2}\right)$;
c) Argue, using symmetry, that for a general vector \mathbf{v} one has $\sigma^{2}=g\left(\|\mathbf{v}\|^{2}\right)$;
d) Show that $E\left((X-E[X \mid \mathbf{v} X+A \mathbf{Z}])^{2}\right)$ is decreasing in $\left\|A^{-1} \mathbf{v}\right\|^{2}$.
a) We know that

$$
\sigma^{2}=E\left((X-E[X \mid \mathbf{Y}])^{2}\right)=1-\Sigma_{X, \mathbf{Y}} \Sigma_{\mathbf{Y}}^{-1} \Sigma_{\mathbf{Y}, X}=1-\mathbf{v}^{T}\left[\mathbf{v}^{T}+I\right]^{-1} \mathbf{v}
$$

b) Let $\mathbf{v}=[\beta, 0,0, \ldots, 0]^{T}$. Then

$$
\sigma^{2}=1-[\beta, 0, \ldots, 0] \operatorname{diag}\left(1+\beta^{2}, 1, \ldots, 1\right)^{-1}[\beta, 0, \ldots, 0]^{T}=1-\frac{\beta^{2}}{1+\beta^{2}}=\frac{1}{1+\beta^{2}}=: g\left(\beta^{2}\right)
$$

c) Since the distribution of \mathbf{Z} is invariant under rotation, we can always rotate the axes so that $\mathbf{v}=[\beta, 0,0, \ldots, 0]^{T}$ where $\beta^{2}=\|\mathbf{v}\|^{2}$.
d)

Let $\mathbf{U}=\mathbf{v} X+A \mathbf{Z}$. Since A is nonsingular, observing \mathbf{U} is the same as observing $\mathbf{T}:=A^{-1} \mathbf{U}=$ $A^{-1} \mathbf{v}+\mathbf{Z}$. Consequently,

$$
E\left((X-E[X \mid \mathbf{U}])^{2}\right)=E\left((X-E[X \mid T])^{2}\right)=g\left(\left\|A^{-1} \mathbf{v}\right\|^{2}\right)
$$

and $g(\cdot)$ is decreasing.

