EEL 5544 Noise in Linear Systems Lecture 11

MULTIPLE RANDOM VARIABLES

- **DEFN** Given a probability space (Ω, \mathcal{F}, P) , a *real vector random variable* \underline{X} is a function that assigns a vector of real numbers to each outcome ω in Ω .
- Random vectors with n elements are also known as n-dimensional random variables.
- A common special case is that a random vector \underline{Z} consists of two real random variables, $\underline{Z} = (X, Y)$.

Example

• We typically define the distribution and density functions for \underline{Z} in terms of X and Y:

DEFN	The _ Y is		 	of random variables	X and
		$F_{X,Y}(x,y) =$			

• More commonly, we use short-hand notation to write:

$$F_{X,Y}(x,y) =$$

Example

Properties

1. $0 \le F_{X,Y}(x,y) \le 1$

Pf:

2.
$$F_{X,Y}(-\infty, y) = F_{X,Y}(x, -\infty) = F_{X,Y}(-\infty, -\infty) = 0$$

PF:
$$F_{X,Y}(-\infty, y) =$$

3. $F_{X,Y}(x, y)$ is a montonically nondecreasing function of both x and yPf: Consider $F_{X,Y}(x + \Delta x, y)$, where $\Delta x > 0$

4.

$$F_{X,Y}(x,\infty) = F_X(x)$$

$$F_{X,Y}(\infty,y) = F_Y(y)$$

In this case, F_X and F_Y are known as ______ for X and Y, respectively

PF: $F_{X,Y}(x,\infty) =$

5.

$$P(a_1 < X \leq a_2, b_1 < Y \leq b_2) =$$

$$F_{X,Y}(a_2, b_2) - F_{X,Y}(a_1, b_2)$$

$$-F_{X,Y}(a_2, b_1) + F_{X,Y}(a_1, b_1)$$

Pf: On separate sheets.

THE JOINT PROBABILITY DENSITY FUNCTION

Properties

1. $f_{X,Y}(x,y) \ge 0$, for $-\infty < x < \infty$ and $-\infty < y < \infty$ Pf:

2.

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$$

Pf:

3.

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

 $f_X(x)$ and $f_Y(y)$ are known as _____

Pf:

4.

$$P(a_1 \le X \le a_2, b_1 \le Y \le b_2) = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{X,Y}(x, y) dy dx$$

Pf: