EEL 5544 Noise in Linear Systems Lecture 34

CONDITIONAL DENSITIES

• We will use the notation $f_{X,n}(\cdot|\cdot)$ to denote a general conditional density, where $f_{X,n}(\cdot)$ is a joint density

EX: The conditional density for $X(t_1)$ given $X(t_2)$, $t_1 \neq t_2$ is

$$f_{X,2}(x_1;t_1|x_2;t_2) = \frac{f_{X,2}(x_1,x_2;t_1,t_2)}{f_{X,1}(x_2;t_2)}.$$

GAUSSIAN RPS

DEFN

X(t) is a *Gaussian random process* if for each $n \in \mathbb{Z}^+$, its *n*-dimensional distribution function is a Gaussian distribution.

• Note that each of the *n*-dimensional distribution functions is completely specified by the appropriate means and covariances.

Alternate definition:

DEFN

- X(t) is a *Gaussian random process* if: - for each $n \in \mathbb{Z}^+$,
 - any real coefficients $\{a_k : 1 \le k \le n\}$
 - and any sampling times $\{t_k \in \mathbf{T} : 1 \le k \le n\},\$

the random variable $a_1X(t_1) + a_2X(t_2) + \ldots + a_nX(t_n)$ is a Gaussian random variable.

MEAN, AUTOCORRELATION, AND AUTOCOVARIANCE FUNCTIONS

- It is generally not practical, and often unnecessary to determine *n*-dimensional distribution or density functions for RPs
- In many problems, it is sufficient to know about ______ statistics and distribution functions

Interpretation:

• At each t, $\mu_X(t)$ is the expected value of the random variable X(t)

- $\mu_X(t)$ depends only on the one-dimensional density $f_{X,1}(x;t)$

- $R_X(t_1, t_2)$ and $C_X(t_1, t_2)$ measure the statistical "coupling" or "dependence" between $X(t_1)$ and $X(t_2)$
 - $R_X(t_1, t_2)$ and $C_X(t_1, t_2)$ depend only on the one- and two-dimensional densities
 - if $X(t_1)$ and $X(t_2)$ are statistically independent, then $C_X(t_1, t_2) = 0$

- if $C_X(t_1, t_2) = 0$, then $X(t_1)$ and $X(t_2)$ are uncorrelated
- Note that

$$C_X(t_1, t_2) = R_X(t_1, t_2) - \mu_X(t_1)\mu_X(t_2),$$

so generally only need to know one of C_X and R_X

Application preview: Noise in Linear Systems

 $X(t) \qquad \begin{array}{c|c} Deterministic signal \\ + random noise \end{array} \rightarrow \begin{array}{c|c} Linear \\ system \end{array} \rightarrow \begin{array}{c|c} Signal \\ + noise \end{array} Y(t)$

What is the noise power at input and output?

- Input: Noise power = $E \{ [X(t)]^2 \} = R_X(t,t)$
- Output: Noise power = function of $R_X(t_1, t_2)$ and **not** just $R_X(t, t)$

Given X(t) with finite power (X(t) a second-order RP), are μ_X , R_X , and C_X all finite?

DEFN The *normalized autocovariance* of a random process X(t) is given by

$$K_X(t_1, t_2) = \frac{C_X(t_1, t_2)}{\sigma_1 \sigma_2},$$

where $\sigma_i = \sqrt{\operatorname{Var}[X(t_i)]}$.

• Note that

$$-1 \le K_X(t_1, t_2) \le 1$$

Examples