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CHAPTER

28
Digital Signal Processors

Digital Signal Processing is carried out by mathematical operations.  In comparison, word
processing and similar programs merely rearrange stored data.  This means that computers
designed for business and other general applications are not optimized for algorithms such as
digital filtering and Fourier analysis.  Digital Signal Processors are microprocessors specifically
designed to handle Digital Signal Processing tasks.  These devices have seen tremendous growth
in the last decade, finding use in everything from cellular telephones to advanced scientific
instruments.  In fact, hardware engineers use "DSP" to mean Digital Signal Processor, just as
algorithm developers use "DSP" to mean Digital Signal Processing.  This chapter looks at how
DSPs are different from other types of microprocessors, how to decide if a DSP is right for your
application, and how to get started in this exciting new field.  In the next chapter we will take a
more detailed look at one of these sophisticated products: the Analog Devices SHARC® family.

How DSPs are Different from Other Microprocessors

In the 1960s it was predicted that artificial intelligence would revolutionize the
way humans interact with computers and other machines.  It was believed that
by the end of the century we would have robots cleaning our houses, computers
driving our cars, and voice interfaces controlling the storage and retrieval of
information.  This hasn't happened; these abstract tasks are far more
complicated than expected, and very difficult to carry out with the step-by-step
logic provided by digital computers.  

However, the last forty years have shown that computers are extremely capable
in two broad areas, (1) data manipulation, such as word processing and
database management, and (2) mathematical calculation, used in science,
engineering, and Digital Signal Processing.  All microprocessors can perform
both tasks; however, it is difficult (expensive) to make a device that is
optimized for both.  There are technical tradeoffs in the hardware design, such
as the size of the instruction set and how interrupts are handled.  Even
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FIGURE 28-1
Data manipulation versus mathematical calculation. Digital computers are useful for two general
tasks: data manipulation and mathematical calculation.  Data manipulation is based on moving
data and testing inequalities, while mathematical calculation uses multiplication and addition.
 

more important, there are marketing issues involved: development and
manufacturing cost, competitive position, product lifetime, and so on.  As a
broad generalization, these factors have made traditional microprocessors, such
as the Pentium®,  primarily directed at data manipulation.  Similarly, DSPs are
designed to perform the mathematical calculations needed in  Digital Signal
Processing.

Figure 28-1 lists the most important differences between these two
categories.  Data manipulation involves storing and sorting information.
For instance, consider a word processing program.  The basic task is to
store the information (typed in by the operator), organize the information
(cut and paste, spell checking, page layout, etc.), and then retrieve the
information (such as saving the document on a floppy disk or printing it
with a laser printer).  These tasks are accomplished by moving data from
one location to another, and testing for inequalities (A=B, A<B, etc.).  As
an example, imagine sorting a list of words into alphabetical order.  Each
word is represented by an 8 bit number, the ASCII value of the first letter
in the word.  Alphabetizing involved rearranging the order of the words
until the ASCII values continually increase from the beginning to the end
of the list.   This can be accomplished by repeating two steps over-and-over
until the alphabetization is complete.  First, test two adjacent entries for
being in alphabetical order (IF A>B THEN ...).  Second, if the two entries
are not in alphabetical order, switch them so that they are (AWB).  When
this two step process is repeated many times on all adjacent pairs, the list
will eventually become alphabetized.

As another example, consider how a document is printed from a word
processor.  The computer continually tests the input device (mouse or keyboard)
for the binary code that indicates "print the document."   When this code is
detected, the program moves the data from the computer's memory to the
printer.  Here we have the same two basic operations: moving data and
inequality testing.  While mathematics is occasionally used in this type of
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FIGURE 28-2
FIR digital filter. In FIR filtering, each
sample in the output signal, y[n], is found
by multiplying samples from the input
signal, x[n], x[n-1], x[n-2], ..., by the filter
kernel coefficients, a0, a1, a2, a3 ..., and
summing the products.

application, it is infrequent and does not significantly affect the overall
execution speed.

In comparison, the execution speed of most DSP algorithms is limited almost
completely by the number of multiplications and additions required. For
example, Fig. 28-2 shows the implementation of an FIR digital filter, the most
common DSP technique.  Using the standard notation, the input signal is
referred to by , while the output signal is denoted by . Our task is tox[ ] y[ ]
calculate the sample at location n in the output signal, i.e., .  An FIR filtery[n]
performs this calculation by multiplying appropriate samples from the input
signal by a group of coefficients, denoted by: , and then addinga0, a1, a2, a3,þ
the products.  In equation form,  is found by:y[n]

This is simply saying that the input signal has been convolved with a filter
kernel (i.e., an impulse response) consisting of: .  Depending ona0, a1, a2, a3,þ
the application, there may only be a few coefficients in the filter kernel, or
many thousands.  While there is some data transfer and inequality evaluation
in this algorithm, such as to keep track of the intermediate results and control
the loops, the math operations dominate the execution time.  
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In addition to preforming mathematical calculations very rapidly, DSPs must
also have a predictable execution time.  Suppose you launch your desktop
computer on some task, say, converting a word-processing document from one
form to another.  It doesn't matter if the processing takes ten milliseconds or
ten seconds; you simply wait for the action to be completed before you give the
computer its next assignment.  

In comparison, most DSPs are used in applications where the processing is
continuous, not having a defined start or end.  For instance, consider an
engineer designing a DSP system for an audio signal, such as a hearing aid.
If the digital signal is being received at 20,000 samples per second, the DSP
must be able to maintain a sustained throughput of 20,000 samples per second.
However, there are important reasons not to make it any faster than necessary.
As the speed increases, so does the cost, the power consumption, the design
difficulty, and so on.  This makes an accurate knowledge of the execution time
critical for selecting the proper device, as well as the algorithms that can be
applied.  

Circular Buffering

Digital Signal Processors are designed to quickly carry out FIR filters and
similar techniques.  To understand the hardware, we must first understand the
algorithms.  In this section we will make a detailed list of the steps needed to
implement an FIR filter.  In the next section we will see how DSPs are
designed to perform these steps as efficiently as possible.

To start, we need to distinguish between off-line processing and real-time
processing.  In off-line processing, the entire input signal resides in the
computer at the same time.  For example, a geophysicist might use a
seismometer to record the ground movement during an earthquake.  After the
shaking is over, the information may be read into a computer and analyzed in
some way.  Another example of off-line processing is medical imaging, such
as computed tomography and MRI.  The data set is acquired while the patient
is inside the machine, but the image reconstruction may be delayed until a later
time.  The key point is that all of the information is simultaneously available
to the processing program.  This is common in scientific research and
engineering, but not in consumer products.  Off-line processing is the realm of
personal computers and mainframes.

In real-time processing, the output signal is produced at the same time that the
input signal is being acquired.  For example, this is needed in telephone
communication, hearing aids, and radar.  These applications must have the
information immediately available, although it can be delayed by a short
amount.  For instance, a 10 millisecond delay in a telephone call cannot be
detected by the speaker or listener.  Likewise, it makes no difference if a
radar signal is delayed by a few seconds before being displayed to the
operator.  Real-time applications input a sample, perform the algorithm, and
output a sample, over-and-over.  Alternatively, they may input a group



Chapter 28- Digital Signal Processors 507

x[n-3]

x[n-2]

x[n-1]

x[n]

x[n-6]

x[n-5]

x[n-4]

x[n-7]

20040

20041

20042

20043

20044

20045

20046

20047

20048

20049

-0.225767

-0.269847

-0.228918

-0.113940

-0.048679

-0.222977

-0.371370

-0.462791

ADDRESS VALUE

newest sample

oldest sample

MEMORY STORED

x[n-4]

x[n-3]

x[n-2]

x[n-1]

x[n-7]

x[n-6]

x[n-5]

x[n]

20040

20041

20042

20043

20044

20045

20046

20047

20048

20049

-0.225767

-0.269847

-0.228918

-0.113940

-0.062222

-0.222977

-0.371370

-0.462791

ADDRESS VALUE

newest sample

oldest sample

MEMORY STORED

a.  Circular buffer at some instant b.  Circular buffer after next sample

FIGURE 28-3
Circular buffer operation. Circular buffers are used to store the most recent values of a continually
updated signal.  This illustration shows how an eight sample circular buffer might appear at some
instant in time (a), and how it would appear one sample later (b).  

of samples, perform the algorithm, and output a group of samples.  This is the
world of Digital Signal Processors. 

Now look back at Fig. 28-2 and imagine that this is an FIR filter being
implemented in real-time.  To calculate the output sample, we must have access
to a certain number of the most recent samples from the input.  For example,
suppose we use eight coefficients in this filter, .  This means wea0, a1, þ a7
must know the value of the eight most recent samples from the input signal,

.  These eight samples must be stored in memory andx[n], x[n&1], þ x[n&7]
continually updated as new samples are acquired.  What is the best way to
manage these stored samples?  The answer is circular buffering. 

Figure 28-3 illustrates an eight sample circular buffer.  We have placed this
circular buffer in eight consecutive memory locations, 20041 to 20048.  Figure
(a) shows how the eight samples from the input might be stored at one
particular instant in time, while (b) shows  the changes after the next sample
is acquired. The idea of circular buffering is that the end of this linear array is
connected to its beginning; memory location 20041 is viewed as being next to
20048, just as 20044 is next to 20045.  You keep track of the array by a
pointer (a variable whose value is an address) that indicates where the most
recent sample resides.   For instance, in (a) the pointer contains the address
20044, while in (b) it contains 20045.  When a new sample is acquired, it
replaces the oldest sample in the array, and the pointer is moved one address
ahead.  Circular buffers are efficient because only one value needs to be
changed when a new sample is acquired.

Four parameters are needed to manage a circular buffer.  First, there must be
a pointer that indicates the start of the circular buffer in memory (in this
example, 20041).  Second, there must be a pointer indicating the end of the
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 1. Obtain a sample with the ADC; generate an interrupt
 2. Detect and manage the interrupt 
 3. Move the sample into the input signal's circular buffer
 4. Update the pointer for the input signal's circular buffer
 5. Zero the accumulator
 6. Control the loop through each of the coefficients

 7. Fetch the coefficient from the coefficient's circular buffer
 8. Update the pointer for the coefficient's circular buffer
 9. Fetch the sample from the input signal's circular buffer
10. Update the pointer for the input signal's circular buffer
11. Multiply the coefficient by the sample
12. Add the product to the accumulator

13. Move the output sample (accumulator) to a holding buffer
14. Move the output sample from the holding buffer to the DAC

TABLE 28-1
FIR filter steps.

array (e.g., 20048), or a  variable that holds its length (e.g., 8).  Third, the step
size of the memory addressing must be specified.  In Fig. 28-3 the step size is
one, for example: address 20043 contains one sample, address 20044 contains
the next sample, and so on.  This is frequently not the case. For instance, the
addressing may refer to bytes, and each sample may require two or four bytes
to hold its value.  In these cases, the step size would need to be two or four,
respectively. 

These three values define the size and configuration of the circular buffer, and
will not change during the program operation.  The fourth value, the pointer to
the most recent sample, must be modified as each new sample is acquired.  In
other words, there must be program logic that controls how this fourth value is
updated based on the value of the first three values.  While this logic is quite
simple, it must be very fast.  This is the whole point of this discussion; DSPs
should be optimized at managing circular buffers to achieve the highest
possible execution speed. 

As an aside, circular buffering is also useful in off-line processing.  Consider
a program where both the input and the output signals are completely contained
in memory.  Circular buffering isn't needed for a convolution calculation,
because every sample can be immediately accessed.  However, many algorithms
are implemented in stages, with an intermediate signal being created between
each stage.  For instance, a recursive filter carried out as a series of biquads
operates in this way.  The brute force method is to store the entire length of
each intermediate signal in memory.  Circular buffering provides another
option: store only those intermediate samples needed for the calculation at
hand.  This reduces the required amount of memory, at the expense of a more
complicated algorithm.  The important idea is that circular buffers are useful
for off-line processing, but critical for real-time applications. 

Now we can look at the steps needed to implement an FIR filter using circular
buffers for both the input signal and the coefficients.  This list may seem trivial
and overexamined- it's not!  The efficient handling of these individual tasks is
what separates a DSP from a traditional microprocessor. For each new sample,
all the following steps need to be taken:
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The goal is to make these steps execute quickly.  Since steps 6-12 will be
repeated many times (once for each coefficient in the filter), special attention
must be given to these operations.  Traditional microprocessors must generally
carry out these 14 steps in serial (one after another), while DSPs are designed
to perform them in parallel.  In some cases, all of the operations within the
loop (steps 6-12) can be completed in a single clock cycle.  Let's look at the
internal architecture that allows this magnificent performance.

Architecture of the Digital Signal Processor

One of the biggest bottlenecks in executing DSP algorithms is transferring
information to and from memory. This includes data, such as samples from the
input signal and the filter coefficients, as well as program instructions, the
binary codes that go into the program sequencer.  For example, suppose we
need to multiply two numbers that reside somewhere in memory.  To do this,
we must fetch three binary values from memory, the numbers to be multiplied,
plus the program instruction describing what to do.

Figure 28-4a shows how this seemingly simple task is done in a traditional
microprocessor.  This is often called a Von Neumann architecture, after the
brilliant American mathematician John Von Neumann (1903-1957). Von
Neumann guided the mathematics of many important discoveries of the early
twentieth century.  His many achievements include:  developing the concept of
a stored program computer, formalizing the mathematics of quantum mechanics,
and work on the atomic bomb.  If it was new and exciting, Von Neumann was
there!

As shown in (a), a Von Neumann architecture contains a single memory and a
single bus for transferring data into and out of the central processing unit
(CPU).  Multiplying two numbers requires at least three clock cycles, one to
transfer each of the three numbers over the bus from the memory to the CPU.
We don't count the time to transfer the result back to memory, because we
assume that it remains in the CPU for additional manipulation (such as the sum
of products in an FIR filter).  The Von Neumann design is quite satisfactory
when you are content to execute all of the required tasks in serial.  In fact,
most computers today are of the Von Neumann design.  We only need other
architectures when very fast processing is required, and we are willing to pay
the price of increased complexity.   

This leads us to the Harvard architecture, shown in (b).  This is named for
the work done at Harvard University in the 1940s under the leadership of
Howard Aiken (1900-1973).  As shown in this illustration, Aiken insisted on
separate memories for data and program instructions, with separate buses for
each.  Since the buses operate independently, program instructions and data can
be fetched at the same time, improving the speed over the single bus design.
Most present day DSPs use this dual bus architecture.

Figure (c) illustrates the next level of sophistication, the Super Harvard
Architecture.  This term was coined by Analog Devices to describe the
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internal operation of their ADSP-2106x and new ADSP-211xx families of
Digital Signal Processors.  These are called SHARC® DSPs, a contraction of
the longer term, Super Harvard ARChitecture.  The idea is to build upon the
Harvard architecture by adding features to improve the throughput.  While the
SHARC DSPs are optimized in dozens of ways, two areas are important
enough to be included in Fig. 28-4c: an instruction cache, and an I/O
controller. 

First, let's look at how the instruction cache improves the performance of the
Harvard architecture. A handicap of the basic Harvard design is that the data
memory bus is busier than the program memory bus.  When two numbers are
multiplied, two binary values (the numbers) must be passed over the data
memory bus, while only one binary value (the program instruction) is passed
over the program memory bus.  To improve upon this situation, we start by
relocating part of the "data" to program memory.  For instance, we might place
the filter coefficients in program memory, while keeping the input signal in data
memory.  (This relocated data is called "secondary data" in the illustration).
At first glance, this doesn't seem to help the situation; now we must transfer
one value over the data memory bus (the input signal sample), but two values
over the program memory bus (the program instruction and the coefficient).  In
fact, if we were executing random instructions, this situation would be no better
at all.  

However, DSP algorithms generally spend most of their execution time in
loops, such as instructions 6-12 of Table 28-1.  This means that the same set
of program instructions will continually pass from program memory to the
CPU.  The Super Harvard architecture takes advantage of this situation  by
including an instruction cache in the CPU.  This is a small memory that
contains about 32 of the most recent program instructions.  The first time
through a loop, the program instructions must be passed over the program
memory bus.  This results in slower operation because of the conflict with the
coefficients that must also be fetched along this path. However, on additional
executions of the loop, the program instructions can be pulled from the
instruction cache.  This means that all of the memory to CPU information
transfers can be accomplished in a single cycle: the sample from the input
signal comes over the data memory bus, the coefficient comes over the program
memory bus, and the program instruction comes from the instruction cache.  In
the jargon of the field, this efficient transfer of data is called a high memory-
access bandwidth.  

Figure 28-5 presents a more detailed view of the SHARC architecture,
showing the I/O controller connected to data memory.  This is how the
signals enter and exit the system. For instance, the SHARC DSPs provides
both serial and parallel communications ports.  These are extremely high
speed connections.  For example, at a 40 MHz clock speed, there are two
serial ports that operate at 40 Mbits/second each, while six parallel ports
each provide a 40 Mbytes/second data transfer.   When all six parallel
ports are used together, the data transfer rate is an incredible 240
Mbytes/second. 
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FIGURE 28-4
Microprocessor architecture.  The Von Neumann architecture
uses a single memory to hold both data and instructions.  In
comparison, the Harvard architecture uses separate memories
for data and instructions, providing higher speed.  The Super
Harvard Architecture improves upon the Harvard design by
adding an instruction cache and a dedicated I/O controller.

This is fast enough to transfer the entire text of this book in only 2
milliseconds!   Just as important, dedicated hardware allows these data streams
to be transferred directly into memory (Direct Memory Access, or DMA),
without having to pass through the CPU's registers.  In other words, tasks 1 &
14 on our list happen independently and simultaneously with the other tasks;
no cycles are stolen from the CPU.  The main buses (program memory bus and
data memory bus) are also accessible from outside the chip, providing an
additional interface to off-chip memory and peripherals.  This allows the
SHARC DSPs to use a four Gigaword (16 Gbyte) memory, accessible at 40
Mwords/second (160 Mbytes/second), for 32 bit data.  Wow!

This type of high speed I/O is a key characteristic of DSPs.  The overriding
goal is to move the data in, perform the math, and move the data out before the
next sample is available.   Everything else is secondary.  Some DSPs have on-
board analog-to-digital and digital-to-analog converters, a feature called mixed
signal.  However, all DSPs can interface with external converters through
serial or parallel ports.
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Now let's look inside the CPU.  At the top of the diagram are two blocks
labeled Data Address Generator  (DAG), one for each of the two
memories.  These control the addresses sent to the program and data
memories, specifying where the information is to be read from or written to.
In simpler microprocessors this task is handled as an inherent part of the
program sequencer, and is quite transparent to the programmer.  However,
DSPs are designed to operate with circular buffers, and benefit from the
extra hardware to manage them efficiently.   This avoids needing to use
precious CPU clock cycles to keep track of how the data are stored.  For
instance, in the SHARC DSPs, each of the two DAGs can control eight
circular buffers.  This means that each DAG holds 32 variables (4 per
buffer), plus the required logic.

Why so many circular buffers?  Some DSP algorithms are best carried out  in
stages.  For instance, IIR filters are more stable if implemented as a cascade
of biquads (a stage containing two poles and up to two zeros).  Multiple stages
require multiple circular buffers for the fastest operation.  The DAGs in the
SHARC DSPs are also designed to efficiently carry out the Fast Fourier
transform.  In this mode, the DAGs are configured to generate bit-reversed
addresses into the circular buffers, a necessary part of the FFT algorithm.  In
addition, an abundance of circular buffers greatly simplifies DSP code
generation- both for the human programmer as well as high-level language
compilers, such as C. 

The data register section of the CPU is used in the same way as in traditional
microprocessors.  In the ADSP-2106x SHARC DSPs, there are 16 general
purpose registers of 40 bits each.  These can hold intermediate calculations,
prepare data for the math processor, serve as a buffer for data transfer, hold
flags for program control, and so on.  If needed, these registers can also be
used to control loops and counters; however, the SHARC DSPs have extra
hardware registers to carry out many of these functions. 

The math processing is broken into three sections, a multiplier , an
arithmetic logic unit (ALU), and a barrel shifter.  The multiplier takes
the values from two registers, multiplies them, and places the result into
another register. The ALU performs addition, subtraction, absolute value,
logical operations (AND, OR, XOR, NOT), conversion between fixed and
floating point formats, and similar functions.  Elementary binary operations
are carried out by the barrel shifter, such as shifting, rotating, extracting
and depositing segments, and so on.  A powerful feature of the SHARC
family is that the multiplier and the ALU can be accessed in parallel. In a
single clock cycle, data from registers 0-7 can be passed to the multiplier,
data from registers 8-15 can be passed to the ALU, and the two results
returned to any of the 16 registers. 

There are also many important features of the SHARC family architecture that
aren't shown in this simplified illustration.  For instance, an 80 bit
accumulator is built into the multiplier to reduce the round-off error
associated with multiple fixed-point math operations.  Another interesting
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FIGURE 28-5
Typical DSP architecture.  Digital Signal Processors are designed to implement tasks in parallel.  This
simplified diagram is of the Analog Devices SHARC DSP.  Compare this architecture with the tasks
needed to implement an FIR filter, as listed in Table 28-1. All of the steps within the loop can be
executed in a single clock cycle. 

feature is the use of shadow registers for all the CPU's key registers. These
are duplicate registers that can be switched with their counterparts in a single
clock cycle.  They are used for fast context switching, the ability to handle
interrupts quickly. When an interrupt occurs in traditional microprocessors, all
the internal data must be saved before the interrupt can be handled.  This
usually involves pushing all of the occupied registers onto the stack, one at a
time.  In comparison, an interrupt in the SHARC family is handled by moving
the internal data into the shadow registers in a single clock cycle.  When the
interrupt routine is completed, the registers are just as quickly restored.  This
feature allows step 4 on our list (managing the sample-ready interrupt) to be
handled very quickly and efficiently. 

Now we come to the critical performance of the architecture, how many of the
operations within the loop (steps 6-12 of Table 28-1) can be carried out at the
same time.  Because of its highly parallel nature, the SHARC DSP can
simultaneously carry out all of these tasks.  Specifically, within a single clock
cycle, it can perform a multiply (step 11), an addition (step 12), two data
moves (steps 7 and 9), update two circular buffer pointers (steps 8 and 10), and
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control the loop (step 6).  There will be extra clock cycles associated with
beginning and ending the loop (steps 3, 4, 5 and 13, plus moving initial values
into place); however, these tasks are also handled very efficiently.  If the loop
is executed more than a few times, this overhead will be negligible.  As an
example, suppose you write an efficient FIR filter program using 100
coefficients.  You can expect it to require about 105 to 110 clock cycles per
sample to execute (i.e., 100 coefficient loops plus overhead). This is very
impressive; a traditional microprocessor requires many thousands of clock
cycles for this algorithm.  

Fixed versus Floating Point

Digital Signal Processing can be divided into two categories, fixed point and
floating point.  These refer to the format used to store and manipulate
numbers within the devices.  Fixed point DSPs usually represent each number
with a minimum of 16 bits, although a different length can be used.  For
instance, Motorola manufactures a family of fixed point DSPs that use 24 bits.
There are four common ways that these  possible bit patterns can216 ' 65,536
represent a number.   In unsigned integer, the stored number can take on any
integer value from 0 to 65,535.  Similarly, signed integer uses two's
complement to make the range include negative numbers, from -32,768 to
32,767.  With unsigned fraction notation, the 65,536 levels are spread
uniformly between 0 and 1.  Lastly, the signed fraction format allows
negative numbers, equally spaced between -1 and 1. 

In comparison, floating point DSPs typically use a minimum of 32 bits to
store each value.  This results in many more bit patterns than for fixed
point,  to be exact.  A key feature of floating point notation232 ' 4,294,967,296
is that the represented numbers are not uniformly spaced.   In the most common
format (ANSI/IEEE Std. 754-1985), the largest and smallest numbers are

 and , respectively.  The represented values are unequally±3.4 ×1038 ±1.2 ×10&38

spaced between these two extremes, such that the gap between any two
numbers is about ten-million times smaller than the value of the numbers. 
This is important because it places large gaps between large numbers, but small
gaps between small numbers.  Floating point notation is discussed in more
detail in Chapter 4.  

All floating point DSPs can also handle fixed point numbers, a necessity to
implement counters, loops, and signals coming from the ADC and going to the
DAC.  However, this doesn't mean that fixed point math will be carried out as
quickly as the floating point operations; it depends on the internal architecture.
For instance, the SHARC DSPs are optimized for both floating point and fixed
point operations, and executes them with equal efficiency.  For this reason, the
SHARC devices are often referred to as "32-bit DSPs," rather than just
"Floating Point."

Figure 28-6 illustrates the primary trade-offs between fixed and floating point
DSPs.  In Chapter 3 we stressed that fixed point arithmetic is much
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Fixed versus floating point.  Fixed point DSPs
are generally cheaper, while floating point
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faster than floating point in general purpose computers.  However, with DSPs
the speed is about the same, a result of the hardware being highly optimized for
math operations.  The internal architecture of a floating point DSP is more
complicated than for a fixed point device.  All the registers and data buses must
be 32 bits wide instead of only 16; the multiplier and ALU must be able to
quickly perform floating point arithmetic, the instruction set must be larger (so
that they can handle both floating and fixed point numbers), and so on.
Floating point (32 bit) has better precision and a higher dynamic range than
fixed point (16 bit) .  In addition, floating point programs often have a shorter
development cycle, since the programmer doesn't generally need to worry about
issues such as overflow, underflow, and round-off error. 

On the other hand, fixed point DSPs have traditionally been cheaper than
floating point devices.  Nothing changes more rapidly than the price of
electronics; anything you find in a book will be out-of-date before it is
printed.  Nevertheless, cost is a key factor in understanding how DSPs are
evolving, and we need to give you a general idea.  When this book was
completed in 1999, fixed point DSPs sold for between $5 and $100, while
floating point devices were in the range of $10 to $300.  This difference in
cost can be viewed as a measure of the relative complexity between the
devices.  If you want to find out what the prices are today, you need to look
today. 

Now let's turn our attention to performance; what can a 32-bit floating point
system do that a 16-bit fixed point can't?  The answer to this question is
signal-to-noise ratio.   Suppose we store a number in a 32 bit floating point
format.  As previously mentioned, the gap between this number and its adjacent
neighbor is about one ten-millionth of the value of the number.  To store the
number, it must be round up or down by a maximum of one-half the gap size.
In other words, each time we store a number in floating point notation, we add
noise to the signal. 

The same thing happens when a number is stored as a 16-bit fixed point value,
except that the added noise is much worse.   This is because the gaps between
adjacent numbers are much larger.  For instance, suppose we store  the number
10,000 as a signed integer (running from -32,768 to 32,767). The gap between
numbers is one ten-thousandth of the value of the number we are storing.  If we
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want to store the number 1000, the gap between numbers is only one one-
thousandth of the value.

Noise in signals is usually represented by its standard deviation.  This was
discussed in detail in Chapter 2.  For here, the important fact is that the
standard deviation of this quantization noise is about one-third of the gap
size.  This means that the signal-to-noise ratio for storing a floating point
number is about 30 million to one, while for a fixed point number it is only
about ten-thousand to one.  In other words, floating point has roughly 30,000
times less quantization noise than fixed point. 

This brings up an important way that DSPs are different from traditional
microprocessors.  Suppose we implement an FIR filter in fixed point.  To do
this, we loop through each coefficient, multiply it by the appropriate sample
from the input signal, and add the product to an accumulator.  Here's the
problem.  In traditional microprocessors, this accumulator is just another 16 bit
fixed point variable.  To avoid overflow, we need to scale the values being
added, and will correspondingly add quantization noise on each step.  In the
worst case, this quantization noise will simply add, greatly lowering the signal-
to-noise ratio of the system.  For instance, in a 500 coefficient FIR filter, the
noise on each output sample may be 500 times the noise on each input sample.
The signal-to-noise ratio of ten-thousand to one has dropped to a ghastly
twenty to one.  Although this is an extreme case, it illustrates the main point:
when many operations are carried out on each sample, it's bad, really bad.  See
Chapter 3 for more details.

DSPs handle this problem by using an extended precision accumulator.
This is a special register that has 2-3 times as many bits as the other memory
locations.  For example, in a 16 bit DSP it may have 32 to 40 bits, while in the
SHARC DSPs it contains 80 bits for fixed point use.  This extended range
virtually eliminates round-off noise while the accumulation is in progress.  The
only round-off error suffered is when the accumulator is scaled and stored in
the 16 bit memory.  This strategy works very well, although it does limit how
some algorithms must be carried out.  In comparison, floating point has such
low quantization noise that these techniques are usually not necessary. 

In addition to having lower quantization noise, floating point systems are also
easier to develop algorithms for.  Most DSP techniques are based on repeated
multiplications and additions.  In fixed point, the possibility of an overflow or
underflow needs to be considered after each operation.  The programmer needs
to continually understand the amplitude of the numbers, how the quantization
errors are accumulating, and what scaling needs to take place.  In comparison,
these issues do not arise in floating point; the numbers take care of themselves
(except in rare cases).  

To give you a better understanding of this issue, Fig. 28-7 shows a table from
the SHARC user manual.  This describes the ways that multiplication can be
carried out for both fixed and floating point formats.   First, look at how
floating point numbers can be multiplied; there is only one way!  That
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FIGURE 28-7
Fixed versus floating point instructions.  These are the multiplication instructions used in
the SHARC DSPs.  While only a single command is needed for floating point, many
options are needed for fixed point.  See the text for an explanation of these options. 

is, Fn = Fx * Fy, where Fn, Fx, and Fy are any of the 16 data registers.  It
could not be any simpler.  In comparison, look at all the possible commands for
fixed point multiplication.  These are the many options needed to efficiently
handle the problems of round-off, scaling, and format.

In Fig. 28-7, Rn, Rx, and Ry refer to any of the 16 data registers, and MRF
and MRB are 80 bit accumulators.  The vertical lines indicate options. For
instance, the top-left entry in this table means that all the following are valid
commands:  Rn = Rx * Ry, MRF = Rx * Ry, and MRB = Rx * Ry.  In other
words, the value of any two registers can be multiplied and placed into another
register, or into one of the extended precision accumulators.  This table also
shows that the numbers may be either signed or unsigned (S or U), and may be
fractional or integer (F or I).  The RND and SAT options are ways of
controlling rounding and register overflow.  
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There are other details and options in the table, but they are not important for
our present discussion.  The important idea is that the fixed point programmer
must understand dozens  of ways to carry out the very basic task of
multiplication.  In contrast, the floating point programmer can spend his time
concentrating on the algorithm.

Given these tradeoffs between fixed and floating point, how do you choose
which to use?  Here are some things to consider.  First, look at how many bits
are used in the ADC and DAC.  In many applications, 12-14 bits per sample
is the crossover for using fixed versus floating point.  For instance, television
and other video signals typically use 8 bit ADC and DAC, and the precision of
fixed point is acceptable.  In comparison, professional audio applications can
sample with as high as 20 or 24 bits, and almost certainly need floating point
to capture the large dynamic range. 

The next thing to look at is the complexity of the algorithm that will be run.
If it is relatively simple, think fixed point; if it is more complicated, think
floating point.  For example, FIR filtering and other operations in the time
domain only require a few dozen lines of code, making them suitable for fixed
point. In contrast, frequency domain algorithms, such as spectral analysis and
FFT convolution, are very detailed and can be much more difficult to program.
While they can be written in fixed point, the development time will be greatly
reduced if floating point is used. 

Lastly, think about the money: how important is the cost of the product, and
how important is the cost of the development?  When fixed point is chosen, the
cost of the product will be reduced, but the development cost will probably be
higher due to the more difficult algorithms.  In the reverse manner, floating
point will generally result in a quicker and cheaper development cycle, but a
more expensive final product.   

Figure 28-8 shows some of the major trends in DSPs.  Figure (a) illustrates the
impact that Digital Signal Processors have had on the embedded market.  These
are applications that use a microprocessor to directly operate and control some
larger system, such as a cellular telephone, microwave oven, or automotive
instrument display panel.  The name "microcontroller" is often used in
referring to these devices, to distinguish them from the microprocessors used
in personal computers.   As shown in (a), about 38% of embedded designers
have already started using DSPs, and another 49% are considering the switch.
The high throughput and computational power of DSPs often makes them an
ideal choice for embedded designs. 

As illustrated in (b), about twice as many engineers currently use fixed
point as use floating point DSPs.  However, this depends greatly on the
application.  Fixed point is more popular in competitive consumer products
where the cost of the electronics must be kept very low.  A good example
of this is cellular telephones.  When you are in competition to sell millions
of your product, a cost difference of only a few dollars can be the difference
between success and failure.  In comparison, floating point is more common
when greater performance is needed and cost is not important.  For
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Major trends in DSPs.  As illustrated in (a), about 38% of embedded designers have already switched from
conventional microprocessors to DSPs, and another 49% are considering the change.  In (b), about twice as
many engineers use fixed point as use floating point DSPs.  This is mainly driven by consumer products that
must have low cost electronics, such as cellular telephones.  However, as shown in (c), floating point is the
fastest growing segment; over one-half of engineers currently using 16 bit devices plan to migrate to floating
point DSPs 

instance, suppose you are designing a medical imaging system, such a
computed tomography scanner.  Only a few  hundred of the model will ever
be sold, at a price of several hundred-thousand dollars each.  For this
application, the cost of the DSP is insignificant, but the performance is
critical.   In spite of the larger number of fixed point DSPs being used, the
floating point market is the fastest growing segment.  As shown in (c), over
one-half of engineers using 16-bits devices plan to migrate to floating point
at some time in the near future.

Before leaving this topic, we should reemphasize that floating point and fixed
point usually use 32 bits and 16 bits, respectively, but not always.  For



The Scientist and Engineer's Guide to Digital Signal Processing520

instance, the SHARC family can represent numbers in 32-bit fixed point, a
mode that is common in digital audio applications.  This makes the 232

quantization levels spaced uniformly over a relatively small range, say,
between -1 and 1.  In comparison, floating point notation places the 232

quantization levels logarithmically over a huge range, typically ±3.4×1038.
This gives 32-bit fixed point better precision, that is, the quantization error on
any one sample will be lower.   However, 32-bit floating point has a higher
dynamic range, meaning there is a greater difference between the largest
number and the smallest number that can be represented.   

C versus Assembly

DSPs are programmed in the same languages as other scientific and engineering
applications, usually assembly or C. Programs written in assembly can execute
faster, while programs written in C are easier to develop and maintain.  In
traditional applications, such as programs run on personal computers and
mainframes, C is almost always the first choice.  If assembly is used at all, it
is restricted to short subroutines that must run with the utmost speed.  This is
shown graphically in Fig. 28-9a; for every traditional programmer that works
in assembly, there are approximately ten that use C.

However, DSP programs are different from traditional software tasks in two
important respects.  First, the programs are usually much shorter, say, one-
hundred lines versus ten-thousand lines.  Second, the execution speed is
often a critical part of the application.  After all, that's why someone uses
a DSP in the first place, for its blinding speed.   These two factors motivate
many software engineers to switch from C to assembly for programming
Digital Signal Processors.   This is illustrated in (b); nearly as many DSP
programmers use assembly as use C. 

Figure (c) takes this further by looking at the revenue produced by DSP
products.  For every dollar made with a DSP programmed in C, two dollars are
made with a DSP programmed in assembly.  The reason for this is simple;
money is made by outperforming the competition.  From a pure performance
standpoint, such as execution speed and manufacturing cost, assembly almost
always has the advantage over C.  For instance, C code usually requires a
larger memory than assembly, resulting in more expensive hardware.  However,
the DSP market is continually changing.  As the market grows, manufacturers
will respond by designing DSPs that are optimized for programming in C.  For
instance, C is much more efficient when there is a large, general purpose
register set and a unified memory space.  These future improvements will
minimize the difference in execution time between C and assembly, and allow
C to be used in more applications. 

To better understand this decision between C and assembly, let's look at
a typical DSP task programmed in each language.  The example we will
use is the calculation of the dot product of the two arrays,  and .x [ ] y [ ]
This is a simple mathematical operation, we multiply each coefficient in one
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Programming in C versus assembly.  As
shown in (a), only about 10% of traditional
programmers (such as those that work on
personal computers and mainframes) use
assembly. However, as illustrated in (b),
assembly is much more common in Digital
Signal Processors. This is because DSP
programs must operate as fast as possible,
and are usually quite short. Figure (c) shows
that assembly is even more common in
products that generate a high revenue. 

TABLE 28-2
Dot product in C.  This progam calculates
the dot product of two arrays, x[ ] and y[ ],
and stores the result in the variable, result.

001 #define LEN 20
002   float dm x[LEN];
003   float pm y[LEN];
004   float result;
005
006 main()
007
008 {
009   int n;
010   float s;
011   for (n=0;n<LEN;n++)
012     s += x[n]*y[n];
013   result = s
014 }

array by the corresponding coefficient in the other array, and sum the
products, i.e. .  This should look veryx[0]×y[0] % x[1]×y[1] % x[2]×y[2] % þ
familiar; it is the fundamental operation in an FIR filter.  That is, each
sample in the output signal is found by multiplying stored samples from the
input signal (in one array) by the filter coefficients (in the other array), and
summing the products. 

Table 28-2 shows how the dot product is calculated in a C program.  In lines
001-004 we define the two arrays,  and , to be 20 elements long.x [ ] y [ ]
We also define result ,  the variable that  holds the calculated dot
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TABLE 28-3
Dot product in assembly (unoptimized).  This program calculates the dot product of the
two arrays, x[ ] and y[ ], and stores the result in the variable, result. This is assembly code
for the Analog Devices SHARC DSPs.  See the text for details.

001 i12 = _y; /* i12 points to beginning of y[ ] */
002 i4 = _x; /* i4 points to beginning of x[ ] */
003
004 lcntr = 20, do (pc,4) until lce; /* loop for the 20 array entries */
005   f2 = dm(i4,m6); /* load the x[ ] value into register f2 */
006   f4 = pm(i12,m14); /* load the y[ ] value into register f4 */
007   f8 = f2*f4; /* multiply the two values, store in f8 */
008   f12 = f8 + f12; /* add the product to the accumulator in f12 */ 
009
010 dm(_result) = f12; /* write the accumulator to memory */

product at the completion of the program.  Line 011 controls the 20 loops
needed for the calculation, using the variable n as a loop counter.  The only
statement within the loop is line 012, which multiplies the corresponding
coefficients from the two arrays, and adds the product to the accumulator
variable, s.  (If you are not familiar with C, the statement: s %' x[n] ( y[n]
means the same as:  ).  After the loop, the value in thes ' s % x[n] ( y[n]
accumulator, s,  is transferred to the output variable, result, in line 013.

A key advantage of using a high-level language (such as C, Fortran, or Basic)
is that the programmer does not need to understand the architecture of the
microprocessor being used; knowledge of the architecture is left to the
compiler.  For instance, this short C program uses several variables: n, s,
result, plus the arrays:  and .  All of these variables must be assignedx [ ] y [ ]
a "home" in hardware to keep track of their value.  Depending on the
microprocessor, these storage locations can be the general purpose data
registers, locations in the main memory, or special registers dedicated to
particular functions.  However, the person writing a high-level program knows
little or nothing about this memory management; this task has been delegated
to the software engineer who wrote the compiler.  The problem is, these two
people have never met; they only communicate through a set of predefined
rules.  High-level languages are easier than assembly because you give half the
work to someone else.  However, they are less efficient because you aren't
quite sure how the delegated work is being carried out. 

In comparison, Table 28-3 shows the dot product program written in
assembly for the SHARC DSP.  The assembly language for the Analog
Devices DSPs (both their 16 bit fixed-point and 32 bit SHARC devices) are
known for their simple algebraic-like syntax. While we won't go through all
the details, here is the general operation.  Notice that everything relates to
hardware; there are no abstract variables in this code, only data registers
and memory locations.    

Each semicolon represents a clock cycle.  The arrays  and  are held inx [ ] y [ ]
circular buffers in the main memory.  In lines 001 and 002, registers i4
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TABLE 28-4
Dot product in assembly (optimized).  This is an optimized version of the program in
TABLE 28-2, designed to take advantage of the SHARC's highly parallel architecture. 

001 i12 = _y; /* i12 points to beginning of y[ ] */
002 i4 = _x; /* i4 points to beginning of x[ ] */
003
004 f2 = dm(i4,m6), f4 = pm(i12,m14) /* prime the registers */
005 f8 = f2*f4, f2 = dm(i4,m6), f4 = pm(i12,m14);
006
007 lcntr = 18, do (pc,1) until lce; /* highly efficient main loop */
008 f12 = f8 + f12, f8 = f2*f4, f2 = dm(i4,m6), f4 = pm(k12,m14);
009
010 f12 = f8 + f12, f8 = f2*f4; /* complete the last loop */
011 f12 = f8 + f12;
012
013 dm(_result) = f12; /* store the result in memory */

and i12 are pointed to the starting locations of these arrays.  Next, we execute
20 loop cycles, as controlled by line 004.  The format for this statement takes
advantage of the SHARC DSP's zero-overhead looping capability.  In other
words, all of the variables needed to control the loop are held in dedicated
hardware registers that operate in parallel with the other operations going on
inside the microprocessor.  In this case, the register: lcntr (loop counter) is
loaded with an initial value of 20, and decrements each time the loop is
executed.  The loop is terminated when lcntr reaches a value of zero (indicated
by the statement: lce, for "loop counter expired").  The loop encompasses lines
004 to 008, as controlled by the statement (pc,4). That is, the loop ends four
lines after the current program counter.

Inside the loop, line 005 loads the value from  into data register f2, whilex [ ]
line 006 loads the value from  into data register f4.  The symbols "dm" andy [ ]
"pm" indicate that the values are fetched over the "data memory" bus and
"program memory" bus, respectively.  The variables: i4, m6, i12, and m14 are
registers in the data address generators that manage the circular buffers holding

 and .  The two values in f2 and f4 are multiplied in line 007, and thex [ ] y [ ]
product stored in data register f8.  In line 008, the product in f8 is added to the
accumulator, data register f12.  After the loop is completed, the accumulator
in f12 is transferred to memory.  

This program correctly calculates the dot product, but it does not take
advantage of the SHARC highly parallel architecture.  Table 28-4 shows this
program rewritten in a highly optimized form, with many operations being
carried out in parallel.  First notice that line 007 only executes 18 loops, rather
than 20.  Also notice that this loop only contains a single line (008), but that
this line contains multiple instructions.  The strategy is to make the loop as
efficient as possible, in this case, a single line that can be executed in a single
clock cycle.  To do this, we need to have a small amount of code to "prime" the
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registers on the first loop (lines 004 and 005), and another small section of
code to finish the last loop (lines 010 and 011).

To understand how this works, study line 008, the only statement inside the
loop.  In this single statement, four operations are being carried out in parallel:
(1) the value for  is moved from a circular buffer in program memory andx [ ]
placed in f2; (2) the value for  is being moved from a circular buffer iny [ ]
data memory and placed in f4; (3) the previous values of f2 and f4 are
multiplied and placed in f8;  and (4) the previous value in f8 is added to the
accumulator in f12.   

For example, the fifth time that line 008 is executed,  and  are fetchedx[7] y[7]
from memory and stored in f2 and f4.  At the same time, the values for x[6]
and  (that were in f2 and f4 at the start of this cycle) are multiplied andy[6]
placed in f8.  In addition, the value of  (that was in f8 at the start ofx[5]×y[5]
this cycle) is added to the value of f12.  

Let's compare the number of clock cycles required by the unoptimized and
the optimized programs.  Keep in mind that there are 20 loops, with four
actions being required in each loop.  The unoptimized program requires 80
clock cycles to carry out the actions within the loops, plus 5 clock cycles
of overhead, for a total of 85 clock cycles.  In comparison, the optimized
program conducts 18 loops in 18 clock cycles, but requires 11 clock cycles
of overhead to prime the registers and complete the last loop.  This results
in a total execution time of 29 clock cycles, or about three times faster than
the brute force method.

Here is the big question:  How fast does the C program execute relative to the
assembly code?  When the program in Table 28-2 is compiled, does the
executable code resemble our efficient or inefficient assembly example?  The
answer is that the compiler generates the efficient code.  However, it is
important to realize that the dot product is a very simple example.  The
compiler has a much more difficult time producing optimized code when the
program becomes more complicated, such as multiple nested loops and erratic
jumps to subroutines.  If you are doing something straightforward, expect the
compiler to provide you a nearly optimal solution.  If you are doing something
strange or complicated, expect that an assembly program will execute
significantly faster than one written in C.  In the worst case, think a factor of
2-3.  As previously mentioned, the efficiency of C versus assembly depends
greatly on the particular DSP being used.  Floating point architectures can
generally be programmed more efficiently than fixed-point devices when using
high-level languages such as C.  Of course, the proper software tools are
important for this, such as a debugger with profiling features that help you
understand how long different code segments take to execute. 

There is also a way you can get the best of both worlds: write the program
in C, but use assembly for the critical sections that must execute quickly.
This is one reason that C is so popular in science and engineering.  It operates
as a high-level language, but also allows you to directly manipulate
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Assembly versus C.  Programs in C are
more flexible and quicker to develop.  In
comparison, programs in assembly often
have better performance; they run faster
and use less memory, resulting in lower
cost.

the hardware if you so desire.  Even if you intend to program only in C, you
will probably need some knowledge of the architecture of the DSP and the
assembly instruction set.   For instance, look back at lines 002 and 003 in
Table 28-2, the dot product program in C.  The "dm" means that  is to bex [ ]
stored in data memory, while the "pm" indicates that  will reside iny [ ]
program memory.  Even though the program is written in a high level language,
a basic knowledge of the hardware is still required to get the best performance
from the device.

Which language is best for your application? It depends on what is more
important to you.  If you need flexibility and fast development, choose C.  On
the other hand, use assembly if you need the best possible performance.  As
illustrated in Fig. 28-10, this is a tradeoff you are forced to make.  Here are
some things you should consider. 

‘ How complicated is the program?  If it is large and intricate, you will
probably want to use C.  If it is small and simple, assembly may be a good
choice. 

‘ Are you pushing the maximum speed of the DSP?  If so, assembly will
give you the last drop of performance from the device.  For less demanding
applications, assembly has little advantage, and you should consider using
C.

‘ How many programmers will be working together?  If the project is large
enough for more than one programmer, lean toward C and use in-line
assembly only for time critical segments.

‘ Which is more important, product cost or development cost?  If it is
product cost, choose assembly; if it is development cost, choose C.

‘ What is your background? If you are experienced in assembly (on other
microprocessors), choose assembly for your DSP.  If your previous work
is in C, choose C for your DSP.   

‘ What does the DSP's manufacturer suggest you use?

This last item is very important.  Suppose you ask a DSP manufacturer which
language to use, and they tell you: "Either C or assembly can be used, but we
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recommend C."  You had better take their advice!  What they are really saying
is: "Our DSP is so difficult to program in assembly that you will need 6
months of training to use it."  On the other hand, some DSPs are easy to
program in assembly.  For instance, the Analog Devices products are in this
category. Just ask their engineers; they are very proud of this. 

One of the best ways to make decisions about DSP products and software is to
speak with engineers who have used them.  Ask the manufacturers for
references of companies using their products, or search the web for people you
can e-mail.  Don't be shy; engineers love to give their opinions on products they
have used.  They will be flattered that you asked.

How Fast are DSPs?

The primary reason for using a DSP instead of a traditional microprocessor
is speed, the ability to move samples into the device, carry out the needed
mathematical operations, and output the processed data.  This brings up the
question: How fast are DSPs?  The usual way of answering this question is
benchmarks, methods for expressing the speed of a microprocessor as a
number.  For instance, fixed point systems are often quoted in MIPS
(million integer operations per second).  Likewise, floating point devices
can be specified in MFLOPS (million floating point operations per second).

One hundred and fifty years ago, British Prime Minister Benjamin Disraeli
declared that there are three types of lies: lies, damn lies, and statistics.  If
Disraeli were alive today and working with microprocessors, he would add
benchmarks as a fourth category.  The idea behind benchmarks is to provide
a head-to-head comparison to show which is the best device.  Unfortunately,
this often fails in practicality, because different microprocessors excel in
different areas.  Imagine asking the question: Which is the better car, a
Cadillac or a Ferrari?  It depends on what you want it for!

Confusion about benchmarks is aggravated by the competitive nature of the
electronics industry.  Manufacturers want to show their products in the best
light, and they will use any ambiguity in the testing procedure to their
advantage. There is an old saying in electronics: "A specification writer can
get twice as much performance from a device as an engineer."   These
people aren't being untruthful, they are just paid to have good imaginations.
Benchmarks should be viewed as a tool for a complicated task.  If you are
inexperienced in using this tool, you may come to the wrong conclusion.  A
better approach is to look for specific information on the execution speed
of the algorithms you plan to carry out.  For instance, if your application
calls for an FIR filter, look for the exact number of clock cycles it takes for
the device to execute this particular task.

Using this strategy, let's look at the time required to execute various
algorithms on our featured DSP, the Analog Devices SHARC family.  Keep
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The speed of DSPs.  The throughput of a particular DSP algorithm can be found by
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in mind that microprocessor speed is doubling about every three years.  This
means you should pay special attention to the method we use in this example.
The actual numbers are always changing, and you will need to repeat the
calculations every time you start a new project.  In the world of  twenty-first
century technology, blink and you are out-of-date!  

When it comes to understanding execution time, the SHARC family is one
of the easiest DSP to work with.  This is because it can carry out a
multiply-accumulate operation in a single clock cycle.  Since most FIR
filters use 25 to 400 coefficients, 25 to 400 clock cycles are required,
respectively, for each sample being processed. As previously described,
there is a small amount of overhead needed to achieve this loop efficiency
(priming the first loop and completing the last loop), but it is negligible
when the number of loops is this large.  To obtain the throughput of the
filter, we can divide the SHARC clock rate (40 MHz at present) by the
number of clock cycles required per sample.  This gives us a maximum FIR
data rate of about 100k to 1.6M samples/second.  The calculations can't get
much simpler than this!  These FIR throughput values are shown in Fig. 28-
11. 

The calculations are just as easy for recursive filters. Typical IIR filters use
about 5 to 17 coefficients.  Since these loops are relatively short, we will
add a small amount of overhead, say 3 cycles per sample.  This results in
8 to 20 clock cycles being required per sample of processed data.  For the
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40 MHz clock rate, this provides a maximum IIR throughput of 1.8M to
3.1M samples/second. These IIR values are also shown in Fig. 28-11.

Next we come to the frequency domain techniques, based on the Fast Fourier
Transform.  FFT subroutines are almost always provided by the  manufacturer
of the DSP.  These are highly-optimized routines written in assembly.  The
specification sheet of the ADSP-21062 SHARC DSP indicates that a 1024
sample complex FFT requires 18,221 clock cycles, or about 0.46 milliseconds
at 40 MHz. To calculate the throughput, it is easier to view this as 17.8 clock
cycles per sample.  This "per-sample" value only changes slightly with longer
or shorter FFTs.  For instance, a 256 sample FFT requires about 14.2 clock
cycles per sample, and a 4096 sample FFT requires 21.4 clock cycles per
sample.  Real FFTs can be calculated about 40% faster than these complex FFT
values.  This makes the overall range of all FFT routines about 10 to 22 clock
cycles per sample, corresponding to a throughput of about 1.8M to 3.3M
samples/second.

FFT convolution is a fast way to carry out FIR filters.  In a typical case, a  512
sample segment is taken from the input, padded with an additional 512 zeros,
and converted into its frequency spectrum by using a 1024 point FFT.  After
multiplying this spectrum by the desired frequency response, a 1024 point
Inverse FFT is used to move back into the time domain.  The resulting 1024
points are combined with the adjacent processed segments using the overlap-
add method.  This produces 512 points of the output signal.

How many clock cycles does this take?  Each 512 sample segment requires two
1024 point FFTs, plus a small amount of overhead.  In round terms, this is
about a factor of five greater than for a single FFT of 512 points.  Since the
real FFT requires about 12 clock cycles per sample, FFT convolution can be
carried out in about 60 clock cycles per sample.  For a 2106x SHARC DSP at
40 MHz, this corresponds to a data throughput of approximately 660k
samples/second.  

Notice that this is about the same as a 60 coefficient FIR filter carried out by
conventional convolution.  In other words, if an FIR filter has less than 60
coefficients, it can be carried out faster by standard convolution.  If it has
greater than 60 coefficients, FFT convolution is quicker.  A key advantage of
FFT convolution is that the execution time only increases as the logarithm of
the number of coefficients.  For instance a 4,096 point filter kernel only
requires about 30% longer to execute as one with only 512 points. 

FFT convolution can also be applied in two-dimensions, such as for image
processing.  For instance, suppose we want to process an 800×600 pixel image
in the frequency domain.  First, pad the image with zeros to make it
1024×1024.  The two-dimensional frequency spectrum is then calculated by
taking the FFT of each of the rows, followed by taking the FFT of each of  the
resulting columns.  After multiplying this 1024×1024 spectrum by the desired
frequency response, the two-dimensional Inverse FFT is taken.  This is carried
out by taking the Inverse FFT of each of the rows, and then each of the
resulting columns.  Adding the number of clock cycles and dividing by the
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number of samples, we find that this entire procedure takes roughly 150 clock
cycles per pixel.  For a 40 MHz ADSP-2106, this corresponds to a data
throughput of about 260k samples/second.  

Comparing these different techniques in Fig. 28-11, we can make an important
observation.  Nearly all DSP techniques require between 4 and  400
instructions (clock cycles in the SHARC family) to execute.  For a SHARC
DSP operating at 40 MHz, we can immediately conclude that its data
throughput will be between 100k and 10M samples per second, depending on
how complex of algorithm is used.  

Now that we understand how fast DSPs can process digitized signals, let's turn
our attention to the other end; how fast do we need to process the data?  Of
course, this depends on the application.  We will look at two of the most
common, audio and video processing.  

The data rate needed for an audio signal depends on the required quality of the
reproduced sound.  At the low end, telephone quality speech only requires
capturing the frequencies between about 100 Hz and 3.2 kHz, dictating a
sampling rate of about 8k samples/second.  In comparison, high fidelity music
must contain the full 20 Hz to 20 kHz range of human  hearing.  A 44.1 kHz
sampling rate is often used for both the left and right channels, making the
complete Hi Fi signal 88.2k samples/second.  How does the SHARC family
compare with these requirements?  As shown in Fig. 28-11, it can easily handle
high fidelity audio, or process several dozen voice signals at the same time.  

Video signals are a different story; they require about one-thousand times the
data rate of audio signals.  A good example of low quality video is the the CIF
(Common Interface Format) standard for videophones.  This uses 352×288
pixels, with 3 colors per pixel, and 30 frames per second, for a total data rate
of 9.1 million samples per second.  At the high end of quality there is HDTV
(high-definition television), using 1920×1080 pixels, with 3 colors per pixel,
and 30 frames per second.  This requires a data rate to over 186 million
samples per second.  These data rates are above the capabilities of a single
SHARC DSP, as shown in Fig. 28-11.  There are other applications that also
require these very high data rates, for instance, radar, sonar, and military uses
such as missile guidance.

To handle these high-power tasks, several DSPs can be combined into a single
system. This is called multiprocessing or parallel processing.  The
SHARC DSPs were designed with this type of multiprocessing in mind, and
include special features to make it as easy as possible.  For instance, no
external hardware logic is required to connect the external busses of multiple
SHARC DSPs together; all of the bus arbitration logic is already contained
within each device.  As an alternative, the link ports (4 bit, parallel) can
be used to connect multiple processors in various configurations.  Figure 28-
12 shows typical ways that the SHARC DSPs can be arranged in
multiprocessing systems.  In Fig. (a), the algorithm is broken into sequential
steps, with each processor performing one of the steps in an "assembly line"



The Scientist and Engineer's Guide to Digital Signal Processing530

ADSP-2106x

Link
Port

ADSP-2106x

Link
Port

ADSP-2106x

Link
Port

Link
Port

Link
Port

Link
Port

BULK MEMORY

External Port External Port External Port

b.  Cluster multiprocessing

ADSP-2106x

Link
Port

ADSP-2106x

Link
Port

ADSP-2106x

Link
Port

DATA DATALink
Port

Link
Port

Link
Port

a.  Data flow multiprocessing

FIGURE 28-12
Multiprocessing configurations.  Multiprocessor systems typically use one of two schemes
to communicate between processor nodes, (a) dedicated point-to-point communication
channels, or (b) a shared global memory accessed over a parallel bus. 

strategy.  In (b), the processors interact through a single shared global memory,
accessed over a parallel bus (i.e., the external port).  Figure 28-13 shows
another way that a large number of processors can be combined into a single
system, a 2D or 3D "mesh."  Each of these configuration will have relative
advantages and disadvantages for a particular task.

To make the programmer's life easier, the SHARC family uses a unified
address space.  This means that the 4 Gigaword address space, accessed by the
32 bit address bus, is divided among the various processors that are working
together.  To transfer data from one processor to another, simply read from or
write to the appropriate memory locations.  The SHARC internal logic takes
care of the rest, transferring the data between processors at a rate as high as
240 Mbytes/sec (at 40 MHz).  
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array may be the most efficient way to coordinate a large number of processors. 
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The DSP market. At the turn of the
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The Digital Signal Processor Market

The DSP market is very large and growing rapidly.  As shown in Fig. 28-14,
it will be about 8-10 billion dollars/year at the turn of the century, and
growing at a rate of 30-40% each year. This is being fueled by the incessant
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demand for better and cheaper consumer products, such as: cellular
telephones, multimedia computers, and high-fidelity music reproduction.
These high-revenue applications are shaping the field, while less profitable
areas, such as scientific instrumentation, are just riding the wave of
technology.

DSPs can be purchased in three forms, as a core, as a processor, and as a
board level product.  In DSP, the term "core" refers to the section of the
processor where the key tasks are carried out, including the data registers,
multiplier, ALU, address generator, and program sequencer.  A complete
processor requires combining the core with memory and interfaces to the
outside world.   While the core and these peripheral sections are designed
separately, they will be fabricated on the same piece of silicon, making the
processor a single integrated circuit.

Suppose you build cellular telephones and want to include a DSP in the
design.  You will probably want to purchase the DSP as a processor, that
is, an integrated circuit ("chip") that contains the core, memory and other
internal features.  For instance, the SHARC ADSP-21060 comes in a "240
lead Metric PQFP" package, only 35×35×4 mm in size.  To incorporate this
IC in your product, you design a printed circuit board where it will be
soldered in next to your other electronics.  This is the most common way
that DSPs are used.

Now, suppose the company you work for manufactures its own integrated
circuits.  In this case, you might not want the entire processor, just the design
of the core.  After completing the appropriate licensing agreement, you can
start making chips that are highly customized to your particular application.
This gives you the flexibility of selecting how much memory is included, how
the chip receives and transmits data, how it is packaged, and so on.  Custom
devices of this type are an increasingly important segment of the DSP
marketplace. 

Lastly, there are several dozen companies that will sell you DSPs already
mounted on a printed circuit board.  These have such features as extra
memory, A/D and D/A converters, EPROM sockets, multiple processors on
the same board, and so on.  While some of these boards are intended to be
used as stand alone computers, most are configured to be plugged into a
host, such as a personal computer.  Companies that make these types of
boards are called Third Party Developers.  The best way to find them is to
ask the manufacturer of the DSP you want to use.  Look at the DSP
manufacturer's website; if you don't find a list there, send them an e-mail.
They will be more than happy to tell you who is using their products and
how to contact them.    

The present day Digital Signal Processor market (1998) is dominated by four
companies.  Here is a list, and the general scheme they use for numbering their
products:
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Analog Devices (www.analog.com/dsp) 
  ADSP-21xx 16 bit, fixed point
  ADSP-21xxx 32 bit, floating and fixed point

Lucent Technologies (www.lucent.com) 
  DSP16xxx 16 bit fixed point
  DSP32xx 32 bit floating point

Motorola (www.mot.com)
  DSP561xx 16 bit fixed point
  DSP560xx 24 bit, fixed point
  DSP96002 32 bit, floating point

Texas Instruments (www.ti.com)
  TMS320Cxx 16 bit fixed point
  TMS320Cxx 32 bit floating point

Keep in mind that the distinction between DSPs and other microprocessors is
not always a clear line.  For instance, look at how Intel describes the MMX
technology addition to its Pentium processor: 

"Intel engineers have added 57 powerful new instructions
specifically designed to manipulate and process video, audio
and graphical data efficiently.  These instructions are oriented
to the highly parallel, repetitive sequences often found in
multimedia operations."

In the future, we will undoubtedly see more DSP-like functions merged
into traditional microprocessors and microcontrollers.  The internet and other
multimedia applications are a strong driving force for these changes.  These
applications are expanding so rapidly, in twenty years it is very possible that
the Digital Signal Processor may be the "traditional" microprocessor.  

How do you keep up with this rapidly changing field?  The best way is to
read trade journals that cover the DSP market, such as EDN (Electronic
Design News, www.ednmag.com), and ECN (Electronic Component News,
www.ecnmag.com).  These are distributed free, and contain up-to-date
information on what is available and where the industry is going.  Trade
journals are a "must-read" for anyone serious about the field.  You will also
want to be on the mailing list of several DSP manufacturers.  This will
allow you to receive new product announcements, pricing information, and
special offers (such as free software and low-cost evaluation kits).  Some
manufacturers also distribute periodic newsletters.  For instance, Analog
Devices publishes Analog Dialogue four times a year, containing articles
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and information on current topics in signal processing.  All of these
resources, and much more, can be contacted over the internet.  Start by
exploring the manufacturers’ websites, and then sending them e-mail
requesting specific information.
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