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ABSTRACT

An Experimental Learning Element (ELE) for learning and
recognizing sequential patterns is being developed as an
adaptable pattern classifier of a larger learning system. Once
external patterns are converted into a linear sequence of named
objects, the ELE can build models that associate input object
sequences with expected output state sequences. The ELE has
been successfully demonstrated in learning and recognizing
hand-printed characters. This paper describes the ELE and
compares its performance with a Dynamic Thne Wrap (DTW)
based speech recognition system on the task of connected digit
recognition. If permitted to continually learn the ELE reaches
the same performance level as the DTW-CSR on the same
quantized speech test data.

INTRODUCTION

An Experimental Learning Element (ELE) is being developed
for learning and recognizing sequential patterns. The ELE task
is to learn to associate a sequence of expected output states
with a sequence of input states (called objects) so that given a
new object sequence, a "reasonable" sequence of output states
will be generated. Once external patterns are converted into a
linear sequence of named objects, by some task dependent
module (e.g., a video capture system or a speech processor front
end), the ELE can build models that associate the input object
sequences with the expected output state sequences.

Learning Elements will eventually be self-organizing modules
of a learning system and should be task independent, adaptable
to a changing environment, cellular, and reversible. A learning
element is reversible when it can synthesize input sequences
when presented with output sequences.

Figure 1 illustrates the analysis or recognition function of the
ELE. Output states (X's) are shown to be made up of (or
matched to) one or more input objects (Y's). The 'length' of an
output state is defined to be the number of input objects it
spans. To the ELE there is no inherent meaning associated
with an object or an output state, they are simple numbers
from finite sets.

As a step in developing the ELE we have tested it on the task
of speaker dependent connected digit recognition and compared
its performance to that of a dynamic time warp (DTW)
connected speech recognition system. In speech recognition the
input object to output state sequence relationship can be
identified across any pair of quantized levels: centi-second
feature vectors to phones, dyads to syllables, demi-syllables to
words, and so forth. Although the ELE is applicable between
any of the speech levels without change, we choose to use
centisecond quantized feature vectors as the input objects and
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Figure 1: The Analysis Function of ELE

word indices as the output states for easy comparison to an
existing DTW speech recognition system. However, there may
be better ways of using ELE's to perform speech recognition.

In the following sections we describe the ELE, relate it to
other work, and present and discuss the recognition
experiments.

SYSTEM DESCRIPTION

Let y1,y2 T' or more compactly, y(1:T), be an input
sequence of objects to the ELE during time units1 1 through T,
and x(1:R) be the output sequence of recognized states (see
Figure 1). Let b[1:R] be the mapping of input objects to output
states such that br gives the time unit of the first object for
state Xr The analysis task of the ELE is to find R output
states x(1:R) with boundaries in the input sequence of b(1:R) for
a given input object sequence y(1:T) such that the probability
P( x(1:R), b(1:R) I y(1:T) ) is maximized.

The ELE is composed of four' parts: modeling, pattern
matching, decisions, and learning supervision. An input object
enters the pattern matching module where, in the context of
preceding objects, it is matched with previously developed
models for each output state. This process yields the
conditional probability that the input occurs given that the
output state occurs. Input based probabilities for each possible
output state and length are combined with the probabilities
predicted from previously decided output states. The resulting
state sequence decision is assigned a confidence rating which is
used by the learning supervision module to decide whether or
not to update the ELE memory. The following paragraphs
briefly describe the four parts.

"Time' refers to the arrival time of the object to the ELE. Whether or not
this corresponds to any concept of time in the recognition task depends on the
task and the 'front end'.
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ELE Modeling

The basic idea behind the ELE model of a sequence is simple.
A sequence of objects is learned and modeled by counting the
n-grams of objects making up the sequence, where an n-gram is
simply a subsequence of n objects. Thus after learning an
object sequence for a state, the ELE knows how often each
object (1-gram) appeared, how often each pair of objects (2-
gram) appeared in any sequence for each state, and so forth up
to a specified limit of N. If D is the number of different objects
there can be as many as DN different n-grams. However, the
number is limited by the realities of the pattern recognition
task. The size of D is determined by the front end process and
the number of unique n-grams is determined by the complexity
and variability of the states being recognized.

LEVEL 1

LEVEL 2

LEVEL 3

Figure 2: An Example of a Context Organized Memory

The identity and frequency of n-grams is stored in what is
called a Context Organized Memory (COM). This memory is a
modified tree structure in which each node represents a
particular n-gram and is the parent node of all (n+1)-gram
nodes that share the same first n objects. In addition, each
node is linked to an (n-1)-gram node which represents the same
object sequence with one less object at the beginning of the
sequence. Figure 2 gives an example in which the object n-
grams are composed of letters. The objects on the path to a
node at level n define the n-gram represented by the node. The
number at a node is the frequency count of the n-gram. The
dotted lines show links to the related (n-1)-grams. For example,
the 3-gram "SIS" has occurred in the pattern once and is linked
to its unique 2-gram "IS". This example was formed from the
n-grams (n<4) appearing in the word "MISSISSIPPI'.

The COM supports an efficient 'Context Driven Search'. The
memory arranges the objects so that the set of objects which
statistically occur next in context are directly accessible from
the current point in the structure. If the next input object does
not match any of those in the expected set, the next position
searched in the structure corresponds to the less specific context
obtained conceptually by ignoring the oldest object and
algorithmically by following the link to the (n-1)-gram node.
This search technique makes explicit the idea that close context
is the best constraint on the identity of the next event. At level
n the greatest number of nodes expanded (i.e., searching all
sons of a node) before the next object is found will be n. This
corresponds to the case when the new object has never been
found to follow any subpart of the current n-gram and the
search must "drop all context" to look for the object at level 1.
An important feature of the Context Driven Search is that the
average number of nodes expanded per input object is two.
This is obvious if we remember that every failed node expansion
(decreasing level by one) is balanced eventually by some
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successful node expansion (increasing level by one) since the
search remains within the finite levels of the tree.

Four types of knowledge are modeled by the ELE in COMs:

Type 1 The frequency of object n-grams forming parts of
states;

Type 2 The frequency of n-grams composed of states;

Type 3 The frequency of n-grams composed of state lengths
(i.e., the lengths of the underlying object sequence);
and

Type 4 The frequency of n-grams composed of items defined
by the cross product of states and state lengths.

Knowledge type 1 relates object sequences to states. An
object n-gram which appears in more than one state is stored
once and the node lists the proper states with frequency counts.
In addition, the frequency count for each state listed in the
node is further broken down into frequency counts for each
occurring position within the state. This is a detailed position
given by the number of objects preceding and the number of
objects following the object n-gram. Currently, however, the
pattern matching algorithm generalizes the position information
to determine how often the n-gram occurred in each one-third
of a state. More detail is stored now than is used.

The COM structures for the remaining knowledge types are
less complex, similar to the example of Figure 2. The
information in these COM's are used to compute the Predict
Probability described in the next section.

ELE Pattern Matching

Consider an object 4-gram, y1y2y5y4, stored .t node j and let
be the frequency of occurrence of the 4-gram and f1 be the

frequency of occurrence for its parent node, a 3-gram. Then
the conditional probability that object y4 occurs in the context
of the 3-gram is given by the maximum likelyhood estimate:

P(y4 I y1y2y3)
= f/f,. (1)

This is the probabilistic basis for pattern matching in the ELE.

Using conditional probabilities retrieved from COMs the ELE
computes at each time interval, t, two basic probabilities:

1. Input Probability: the probability that the input object
sequence beginning at time b occurs and spans a state
given that it ends at time t and the state occurs. This is
based on knowledge type 1. This part of the algorithm
would be called the template matcher in a speech
recognition algorithm.

2. Predict Probability: the probability that a state and
length occurs given that a previous sequence of states and
lengths have occurred. This is based on knowledge types
3, 4, and 5. This process can be related to a 'syntax
control' module of a connected speech recognition
algorithm.

ELE Dechlon Proce,

From the input and predict probabilities at each input time,
t, the Decision Process computes the probability that a state
and a length and the input object sequence spanning that
length ending at t occurs given past context. These
probabilities are combined over time using the Viterbi
algorithm [1] to compute the k most likely state sequences
ending at time t, for some k. The most likely state sequence
ending at final time T is the recognized state sequence.

31.2.2



ELE Learning Supervision
The Learning Supervision module decides whether or not to

learn to associate the output state sequence with the input
object sequence. Learning the next object in a sequence is
simply a matter of creating a new node in the tree whenever
the object appears in a new context or incrementing a
frequency count when it appears in a previously learned
context. The object is learned in all possible contexts from the
(n-i) gram preceding it for some maximum n down to a null
context in which the object is recorded by itself as a i-gram.
An object can also be 'unlearned'. This is identical to learning
except that node occurrences are decremented and nodes are
deleted if their occurrences become zero,

The decision to learn is based on a threshold test of the
confidence factor and external reinforcement. External
reinforcement may be either from another ELE or from a
human operator. The reinforcement may also include
corrections to some of the state and boundary decision made by
the ELE. These corrections are passed on to the ELE Modeling
section before the COM structures are updated.

RELATED WORK

The model used by the ELE is that sequences are probabilistic
functions of Markov processes. We are using a variable order
Markov process where for each Markov state2 the order is
equal to one minus the level of the node in the corresponding
COM tree. Roucos, Makhoul, and Schwartz [2] recently used a
tree structure to represent a variable-order Markov chain for
modeling the output of a variable frame rate LPC vocoder.

An nth order Markov process is equivalent to some first order
Markov process with an expanded state space. In fact, the ELE
learning process maintains such a state expansion
automatically. Each node on a COM tree represents a state of
the Markov chain encoding a particular n-gram. The
transitions to all possible next Markov states are given by the
links to all sons of the node. New Markov states are added as
new n-grams are observed and can be deleted as transitions to
them become relatively improbable.

Markov states in the ELE are directly related to the input of
the recognition task in contrast to the states in the frequently
used hidden Markov model [3, 4, 5, 6]. A hidden Markov state
stochastically models both the number and identity of variables
in a random variable sequence with the potential of loosing
important detail. Also, hidden Markov model generation is
computationally expensive and non-incremental whereas
learning in the ELE is simple and incremental. The hidden
Markov model has the advantage that memory requirements
are fixed whereas pruning of unlikely nodes in the ELE must be
done at some stage to control memory growth.

EXPERIMENTS AND RESULTS

The ELE was tested on random connected digit phrases
recorded by five male and five female speakers. Each speaker
produced 50 three digit and 40 five digit phrases. Eight of the
three digit and thirteen of the five digit phrases were set aside
as training phrases leaving 69 test phrases containing 261 digits

2We will use state' in bold type to differentiate a Markov state from an
output state of the ELE.

per speaker. Three isolated samples of each digit were recorded
from each speaker and were added to the six digit samples
extracted from training phrases to give a total of nine templates
per digit per speaker. This training and testing data was again
produced in a second recording session by each speaker several
days after the first recording session. The procedures differed
between the two sessions only in that the training samples were
extracted by hand from the first session data and by an
automatic procedure from the second session data.

The speech signal was processed by a i6-bandpass filter bank
to produce filter coefficients every lOms. Each vector was
linearly transformed from 16 filter coefficients to 10 mel-
frequency cepstrum coefficients [71. The data was then time
compressed by a variable frame rate encoding technique which
eliminated on the average one-half of the frames. A set of
about 130 most representative coefficient vectors was
determined from the training data for each speaker and used
for vector quantization [8]. Thus, the input domain for the
ELE was defined by about 130 different objects. The output
domain of the ELE was defined by the 10 digit vocabulary and
a silence state.

Since the digit sequences were known to be random, the ELE
was prevented from predicting any state (i.e, digit), length, or
state-length based on previously identified sequences of states,
lengths, or state-length pairs. Therefore, in these experiments,
only the models built up in knowledge type 1 were used in the
testing. The COM tree structure was limited to a depth of 5 so
that n-grams longer than 5 objects were not learned.

Performance results were compared to a DTW-CSR system
similar to one described by Bridle, Brown, and Chamberlain [9].
The CSR system has the ability to run on non-quantized data,
one-sided quantized data (only the template data vector
quantized), and two-sided quantized data (both template and
test data quantized before matching). The CSR system was run
in all three modes to indicate the limitations the front end
processing was placing on the ELE performance. The ELE at
this time requires two-sided quantization although it is possible
to extend it to handle one-sided quantization.

Both systems were trained for each speaker on the same data.
The CSR system formed a template from each digit sample to
give a total of 90 templates plus a silence template. The ELE
built its COM tree structure from the same template data.
When the CSR system was tested in the two-sided quantization
mode, the input to both systems was identically for each test
phrase. The word recognition rates are given in Table 1.

Training Session 1 2 1 2 Column
Testing Session 1 1 2 2 Average

Non-quantized CSR 99.4 98.1 97.3 97.6 98.1
One-sided CSR 99.4 98.0 97.4 97.5 98.1
Two-sided CSR 98.7 97.5 96.1 97.1 97.4
Two-sided ELE 97.0 90.7 92.2 95.0 93.7

Table 1: Performance of ELE and CSR on Connected Digits

A second experiment tested how ELE performance changed
when learning while testing (LWT) took place. Memory was
initialized with the same training used above. The test phrases
of each speaker were ordered to alternate between three digit
and five digit phrases. After every phrase, the ELE compared
its recognized digit sequence to the correct sequence and
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Figure 3: Performance with and without LWT

determined what digits were correct, substituted, inserted, or
deleted. Every digit that was correct and was adjacent on both
sides to a correct digit, a recognized silence, or a phrase end
was learned by updating the state model with the underlying
object sequence. The constraints on adjacent recognitions help
to assure that the end points of the digit are correct. Similarly
every digit that was inserted or substituted in place of the
correct digit and was adjacent on both sides to a correct digit, a
recognized silence, or a phrase end was 'unlearned'.

The effect of more and more learning can been seen by
dividing the data into four blocks each containing
approximately 650 digits over all speakers. Performance
statistics are then collected from each block. The graph of
Figure 3 combines the results over the four test and training
session pairs.

DISCUSSION

The CSR system results in Table 1 show that vector
quantization on the test data (but not on the training data)
accounts for about 16% of the performance difference between
the non-quantized CSR and the ELE system (from the last
column we have (98.1-97,4)1(98.1-93.7)). Overall the ELE has
about 2.4 times the errors that the two-sided CSR system has
with the same amount of training.

What limitation baa been placed on the ELE that is
important for speech recognition? One is immediately obvious.
The ELE has no knowledge of any similarity metric for the
input object domain. There is no concept of a frame of speech
in the test data being similar to a frame in the template data.
An object (quantized frame) either occurs or does not occ1r in
some previous object context for a state. If it does not occur
the match process goes up the levels in the COM structure (i.e.,
dropping old context) until the object is found with a
correspondingly lower conditional probability or until it is
determined to not exist even at level 1 at which point a lower
limit default conditional probability is used. Without the
concept of object closeness the ELE has a weak model of speech
which requires more training to obtain good performance.

The graph shown in Figure 3 supports this. Even within the
first block of data the ELE has removed one-third of its errors

by learning from its successes and errors. This continues in the
second block and in the last two blocks two-thirds of the errors
have been corrected and the performance is greater or equal to
the average two-sided CSR performance at 97.4%. It is not
known what the individual block performance is for the CSR
but the ELE performance without LWT suggests that it would
drop for the last block. It is also not known how the
performance of the CSR system would change if it also added
templates to its data base. However, these templates could not
be simply added since the throughput of the CSR system is
linear with the number of templates it uses. Although, 230
digit samples were added to the original 91 samples in the ELE
data base per speaker during each LWT experiment, the
processing time was only 25% greater. This processing time
included the time to update the COM structures.

The performance results were similar for the four pairs of
training and testing sessions except for training and testing
within session one. In that experiment, the CSR performance
of 98.7 was not obtained in data blocks three or four (the ELE
had 98.0 and 97.8, respectively). This may suggest that for the
current ELE techniques there is an upper limit to speech
recognition performance independent of training when one ELE
is used to bridge between quantized speech and words. We are
continuing to investigate the ELE and intend to remove any
limitations while retaining the systems basic view of sequential
patterns.
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