CHAPTER II
| ' THE ESTIMATOR STRUCTURE
It 1s desirable to obtain the optimum estimators of
the PSD shape parameters. If the mean square error is
chosen as a measufe of the quality of an estimator, then
the estimators that are sought for £, and B° must minié
mize this error. |

Recall the parameter definltions:

| [ es()ar
fé_? L (2.1)
| j s(f) ar
£
[ - £,)°s(r)ar .
p° = A ' (2.2)

| jf s(r) ar

Hence, the estimators %a and ﬁe (of fa and BE,*re-

spectively) are optimum when the quantities

e(t,) = Bl(r, - 8% (2.3)
and
€(B%) .

- E[(8° - %2)?] | (2.%)

“are minimized (where the symbol E[ ] denotes the ensemble
average of the quantity within the brackets).

Optimum Estimation

It 1s shown in this section that the method used to
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calculate the estimators can be restrieted,-without 1ose.
of generality, to a partieuiar class. The class of pa-
rameter estimators used ia that class which attempts to
estimate S(f) first and then use this result and the |
definition of the parameter to calculate the parameter
estimate.. |
In the case of a power spectrum whose shape 18 known,

fa‘s-mean sqaure error has been minimized (8). In this
investigation, the poWer-spectrum is an unknown. Hence,
minimization of the mean sauare error for each estimator
requires the simultaneous estimation of all of the inde-
prendent parameters of tne PSD that can be determined.after
the process has passed through a window function. If T
is the width of the finite time window employed 1n taking
the measurement (1. e., the observation time), then the
number of independent parameters, N, which specify the
waveform is proportional to BT (Sampling Theorem). |

' Assume that there exists a particular N-set of in-
dependent PSD shape parameters which generates the optimum
estimator for either fa or,BQ. ‘Since a one to one mapping_
from.the N-space of PSD shape parameters to any other
N-space.of PSD shape parameters may be defined, any N_.
independent PSD shape parameters may be utilized in the
estimation procedure. The set of N independent values of
3(f) is an N-set of parameters.which simplifies the -
folloﬁing work. 'Therefore, a solutlon of the original

problem is obtained by an estimation of S$(f) that mini-
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mizes error in the computation of the PSD shape parametef_'

estimates %a and B° from é(f).

Mean Square Error of %a' Recall that the quality.of
the speétral esfimﬁte is measured by the érfor indurreéi
in the computation of }a.and 8% from S(£) (not the meah
square error of S(f)). The mean square error ih'é(f) as

'a function of frequency is
5 ) . L 5 .
oS () = B{Is(f) - 8(£)]7}. (2.5)
Hence, a relationship between the_eerPS'E(%a) and dg(f)
must be found. The results of the preceding section and
the definition of f, yield |
[ rs(erar |
—_— B (2.6)

L Yr
fa ==
[ s(e) af
f

Then the relationship is obtained by considering

| 1] s(o)ar T amarll
€(r,) = E . - L ( . (2.7)
I s(r) ar [ s(f) af
£ £

The guantity within the ‘square brackets can be put over

a common denominator and rewritten as: a
[jf s(f)df][If fé(f)df]_- [ff é(f)&{}[ff fS(f)df]'.
Uf é(f)df] Uf S(-f)df]

'(2.8)'

!
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Since a product of two integrals may be expressed as a

double integral, this can be rewritten as

Jf Ig fé(f)_S(g) dgdf 'If.jg gé(f)_:s(f) dgd.f.

[ 8()s(g) agar
L f g o

[ [ (£-8)8(6)s(e) dgar

= f &ng A y —a (2.9)
I sto)s(e) agar
°r g o '
Letting

é(f)': S(f) + As(f),' ' (2.10)

(2.8) becomes
j j (f = g)8(£)3(g) dedf
f g “

e[ [ (e - ees(0s(a) dgar | (221)
f g

[ T s(e)s(e) agat + [ [ as(r)s(e) agar
fg f g
Evaluating the first integral in the numerator:

[ ] (£ - es(e)s(e) agar
f g '

-='jf s(f)[f.f; S(g) dg - fg gS(g)ngdf
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I

j s(f)[£p - £ Plaf
T .

P[f; fS(f).df.- r, I; s(g) af]

P[faP —_faP]

= 0, (2,12)

Therefore,

A f f (f - g)as(£)3(g) dgaf A
G(fa),=. E f 8;._ . .  (2.13)
| | p? +~P'I as(f) af
£

The denominator can be expressed as a power series.

If J (f - g)s(£)s(g) dedf

| ar -
. E - . (2.18)
-p o
Since I as(f)df, the error in the estimate of P, 1s much
, | _ )

less than P for large iy (see Appendix D), the sum may be

approximated by its first term. Therefore,
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e(r,) = P'”E{[ . J’ (f - g)As(f)s(g)'dg'df]e } (2.15)
. _ _
The integral'can_be partially evaluated.
e(% ) = p"“E{[P I (f - £ _)as{f) df]e } (2.16)
a £ a : (e *
or,

e(%a)

= (l/Pg)EUf:J‘g (£ - ._f‘a)(g; - fa).As(f)As(gﬂdgdf. (_'2.17)

Bringing the expected value into the integral results in

a factor
Ro(f.6) = Elas(£),88(2)]  (2.18)

which is'the.correlatidn éf two adjécent values of the
spectral estimator,. At £ = g this_qﬁantity'is Ug(f),‘the
variance of the spectral estimator as a function of fre-
duenéy, and when f is "close" to g the function 1s rela-
fively constant. But as f - grincreaSes, Rs(f -g)
rapidly goes to.zero. Let fc’ the cdrrelatibn frequency,'
be that frequency differentiaml at which the two samples

- ‘are first said to be uncorfelated, then f, is of ordér of
magnitude 1, Therefore, for large T, it is reasonable
to make the approximation

R (f,g) ~ cﬁ(f)efc(-f - g) (2.19)
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Using this approximation, the double integral can be

reduced to a single-integfél;

e(t,) (1/P j (f £,)0 (f)

| f+fc | |
- [ (g - f)agar.  (2.20)
Of-f, | _ AR

Integrating with respect to g,
| 2 2. i o)
e(t,) = (2f /P j (f - 1, cs(f) ar.  (2.21)

Therefore,-Sihce T, is inversely proportional to T,

-~

'§(fa).= (k,/P°T) jf (f - fa)gdi(f) ar (éfae)

where'kl 1s dependent somewhat on the shape of the:wih—
dow function (as a function of time) used in calculating

--%(f).' To aid in the analysis of this result, let
Sue= (r - fa) and then let £ = u. . This'resuifs in

e(?,) = (k/P°T) j£:f2 oB(f + 1) ar.  (2.23)

Meaﬁ Square Error of Bg. The calculationqu-é?'é
meaﬁ square error 1s analogous-to.the computation of %a'é
mean square error. Recall that the spectrum can beiésti-
mated first without any loss of generélity.' Then; ffom

the definition of ﬁe,
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1] £2s(r)ar "f. fS(f)df-
e(8?) = { | L— -
| ] ste) ar [ s(r) ar

£ £

_, (228
[ £P8(n)ar [ ssee)ar 2
I SN .+ S
j () ar j,'é(r) ar-
£ de T

After placing the fractions over a common denominator and
- writing the pfdduct'of integrals'as a multiple_integral,

this expression becomes

f g u

' 2 | | . [v2 - uv - f2 -+ fg]dvdudgdf 1]
| f f f f £)5(g)5( u)s(v)dvdudgdf B

.f (ij I J I S(f S(g)S(u S(v) 5

.

(2.25)

\

Again, let S(f) = S(f) + As(f) Then,

jf fg fu j Iv@ = uv - £° 4+ fg]S(f)S(g) 92‘ 

-

« [s(u)s(v) + S(u)&s(v)
e(8%) = E4 + As{u)S(v) + As{u)as(v)]dvdudgdf

S

- Is(u)s(v) + S(u)ﬁs(v)

+ As(u)S(v) + As{u)as(v)ldvdudgdf -

(2.26)
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Since, on the average, As(f) {<'S(f), the second order
terms in both the numefator and denominator can be neg-
lected 1n the éase of long time averages. Also, the in-
tegral corresponding to the first term of the fhird fac~

tor in the numerator 1s zero for any S{f). Therefore,
~D Iy 3 - e N _
EB):E{ {1/(p" + 2P s(r)dr 8(f)s({g)
( 3 [[ae [ s ML&&L(.Q
. [ve - uv = f2 + fg] : | {2.27)
_ | - .
« [S{u)as({v) + As(u)s(v)]dvdudgdf] },

_ngain, the denominator'can be expresséd 88 an alternating
power serles which occurs 1n.£he'numérator. But, éll of
the terms, except for the first term, cohtribute second
order effects or less. Theréfofe, the-error may be fur-

ther approximated as

e(%)z {[j j | f (2 - uv - £ +fg]S(f)S(g)

f ¢ “u

[S(u)&s(v) + As(u)S(v)]dvdudgdf] "’} . (2.28)

The integrations over f and g can be performed by using

the following identitles:

J"f S(f) df =

I

j £3(1) df = £,P,
. _
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[ £Ps(s) ar = [8° + £51p. (2.29)
£ S A |
Therefore,

G(B = P~ g { [I j [v - uy - B ]

. [S(u)As(v)_f As(u)S(v)]dvdui]Q-};'(2.35)

Writing the product of 1ntegréls as a multiple integral
and bringing the expected value inside the integral yiélds

#) =2t [ [ [ [ 16 e - U -y - BT

f g “u

. [S(f)S(u)E[AS(g)AS(V)]'+ S(£)s(v)E[as(g) ss(u)]
+ 8(g)S(w)ELbs(£)As(v) ]

+ S(g)S(v)E[As(f)As(u)]]dvdﬁdgdf. o (éfﬁl)

Two of the integrations can be performed for each of the

terms in the third factor.
€(B°) = p~? {J’ [ (ef - 1,8 - B°1[v° - v - B°]
g v
- E[as(g)As(v)]dvdg
+ [ [ 1&° - £,8 - B°1062 - ur, 1E[4s(g)as(u) Jduds
4 : .

¥ ff fv (e - £,£10v% - £,v - B)E(as(£)s(v) Jdvas



E

20

+ f f - f f][f - fau]E[As(f)As(u)]dudf};
o (2.32)

Changing the name of the dummy variables in three of the

integrals to correspond with the first integral yields

(8% = p2 [ [ mlas(edas(v){le® - £,¢ - B°
| s (e

VP - erv o+ £ - B (2.33)

2 e L2 2 |
- 1,ellv" - eV + £ - B ]}dvdg. 

o+ ey

. That is,

e(% ) = Pfg.j; Iv E[gs(g)&s(v)][g? - Efag + fz - B2]_

. [v2 - 2f,v + f - 8° ]dvdg. L (2.34)
As in the case of the derivation for e(fa), let

Elas(g)as(v)] ® o5(g)Gy (& - v) (2.35)
. |

for long time averages. Therefore,
A2\ m o= ' - 2.2
¢(%) = p~° r {{g2 - 2rg - £, - B"]o(g)
g

+F .
. jg ¢ [v® - 2f v + £° - Be]dv} dg
g-—f : : a a .

(2.36)

c

and integrating with respect to v



o
e --Bglcg(g)

(2.37)

e(B) = (20,/9%) [ [6F - 2r,e - 12

o 2 2 2
g +(L5y% —2%g+-%~-51d&

Or,

e(BR) = (er, /%) [ Mg - £,)7 - B°1P0%(e) dg
P | |
(2.28)

+ (£2/(39%)) j; (g - 1,)° - 8°1%6%(e)ag.

But, fc is inversely proportional to T, the observation
time. Therefore, the second term can be ignored for

large T and

v

(8% = 1,/(°1) [ e - £,)% - B2 (e) de.

- .
. (2.39)
By thé change of variables

the error becomes

¢(B%) = 1,/(P°1) ff (£° - Be}ecgtf + £)af. (2.40)

The result for f_  1s repeated here for convenlence:
- o2 22
e(r,) = k /(PT) If 2051 + 1,) ar.

These formulas give a criterlion by which to Judge a
proposed estimator for S{f). If an estimator can be

found which minimizes cg(f) at each value of f, then 1t is
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_clearly aiso optimum for the estimation of f, and B<,

But, If there is an interaction between PSD estimates at
different frequencies, then those estimates at ffequencies
 far from fé should be'given a priority that is higher than
that of those.éstimates ét frequencies close to fé, Thils
is due to the fact that the two weighting functilons £°
'and'(fg— F)° are small only in a range around zero.

The Periodogram

The narrow band characteristics of the reflected sig-
nal in radar meteorology makes the periodogram, a classi-
cally used spectral estimator, a good choice. That is,
the periodogram's mean square error at each frequency
“is proportional to the square of the true value of the
‘spectrum. Hence, both E(fa) and E(ﬁe) are smaliVWhen the
-peripdogram'is used for_é{f). This_confirms the validity
of the choice in this case. |

~The periodogram, as used hefe, is defined to be
S(f)lm @]zT(zwf)L | | (2.41)
where
Zp(278) = f‘ z2(t)p(t) 92T gt (2.42)
_ £ o
and p(t) is a real, time 1imited, window function for the
measurement. Again, z(t) is a particular éample function

of the process's complex envelope referenced to the trans-

mitted frequency.
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Miller and Rochwarger (7) show that if f] and B
are the power mean frequency and mean square bandwidth,
respectiveiy, of’the process after passing through the

time window, then

fa.=,fé - fp - _(2.43),
and
8% = % - Bg | | (2.44)

. wWhere fp is the mean frequency_of'the energy spectrum,
|P(2m)|%, for the window function and Bg is the mean
square bandwidth of IP(evf)lg. Since p(t) is real, fp

ls zero and the effect of the window function on %a_is

to change the erreor 1in the estimate, But, B2

D _
and introduces a known bilas in B°. This blas can be

is not zero

eliminated. A problem, however, oceurs bécause of the
time limited constraint on p(ﬁ). ‘This makes Bg infinite
and care must be taken in the elimination of this bias.

 To facilitate the following work, the.window'fﬁnc-. |
tion, p(t), 1s normalized S0 that if T 1s the finite width .
of p(t), then |

B GLUEE: (2:45)
t o o

The window function is also separated into two factors,
p{t) and GT(t). The first factor, p(t), is a smooth ab-

solutely integrable function on (-®»,o) and has a finite
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mean sgquare Spectral bandwidth, B§; GT(t)'takés into

account the time 1limited characteristic. Théfefore, if
8(t) = z(t)e(t), |  (2.46)
then

zo(ent) = [ E(B)eg(t)e P ar.  (2.47)
T £ T
Thus, the effects of the window functlon can be included

in all of the followlng work.

The Estimator Structure

Formulas'for.the parameter estimates can be derived
directly by beglnning with the definition for each para~
meter and substitutihg the periddogram-for the powef spec-
trum. Again, care must be taken in the case of ﬁz to re-
ﬁove'the bias introdUced by the ﬁihdow function.

The Mean Frequency Estimator. Recall the definition

for f,. Then, after subétitution_gf the periodogram,

- "T—l ff leT(QWf)IE df.' '
fa'z - : _ - o . (2548)
-1
T | Za(2we) 1< af
I iz

The denominator can be recognized as %, an estimator for
the total power in the process; the numerator 1s faP, aﬁ
estimator for the product of the total power with the
power mean frequency; Hence, time domain expressions for
§rand_faP are necessary.

To obtain a time domaln ekpression for P, simply
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substitute the Fourier transform of g(t)GT(t) for=Zf(2wf).

Therefore,

£

-1 0 -jonft ., -
Paal _[j 2(t)ag(t)e I ¢ at]
de Yy -
. [I 5"*(7)%("r)t-f;~32”f'f'r darldaf. (2.49)
Changing the order of integration yields
w, | | > 32W(Tot) Ty
P j; j} %(t)i*(f)GT(t)GT(T) jf e arardt.
- (2.50)
‘Note that the integral over f 1s 6(T - t), since it is the
inverse Fourier transform of a conStant.7 Integration with

respeét to T and use of the sifting property'of impluse
functions yields ' o |

SR e .
P=TT {e(e)|76a(t) dt. (2.51)
=T, el
Or,
. T/2 : T
p=1t [T |5(e)]7 at. (2.52)
-T/2

The quédrature'form of this result cén now.be stated. Let
a be the real part of.g(t) and'let_s be the imaginary part
of &(t) where the independent variable, ¢, of.d and B are
assumed understood for convenience. Then |

. T/2 .
p =7l j / [0 + 8°]at. - (2.53)
-T/2 -

The same result appears in polar form as
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. /2 | o
p=r11 J A% at (2.54)
-T/2 .

where A 1s the ilnstantaneous envelope of the process
after the process has passed through the window.
A similar derivation can be done for the numerator.

Substitution of the conjugate of the Fourier transform of

z(t)p(t) for zi(ewf) ylelds

?@;-= o1 jf_f[j; a*(t)GT(t)eJQWftdt]zT(avf)df.-

- (2.55).

Interchanging the order of integration ylelds

AN

. -1 | f RN -t 7

B, = -j(2rT) jt 5% (£) Gy t) If s2mezyg(2me)edsT aras.
(2.56)

The inner integral can be recognized as the derivative of

the product g(t)GT(t). Therefore,

a .

£ - -3(2rm) "t ft %*(t)GT(t)[é(t)GT(t) +'%(t)éi(t)]dt-

(2.57)

The quadrature form can be obtained by-replacing_%(t)

by its real and imaginary parts, a and B. Note that
Go(t) = s{t + 7/2) - 8(t - 7/2) - {2.58)

where §(t) 1s the Dirac delta function. Hence, the numer-

ator 1is
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$) < astem) [ e+ 8f) + 102 4 60
C Is(t + T/2) - 8(t - T/2)]

+ jlod - 8&] + jlos - Ba)

s (t + T/2 - 8(t - T/e)]}e (t)dt. (2 59) o

The first and second terms cancel,when integrated'since

_— 2' t = T/2
I [aa + QQ]G (t)dt = [a/2 + 8%/2] :
oy _ t = -T/2

(2.60)
and
_I- [6® + 821[6(t + T/2) - 8(t - T/2)]G,(t) at
't A . _
o 5. t = -T/2 -
= 1/2[a +-B'1|. (2.61)
N - T -
' The fourth term is idenfically zero. This leaves

2\

pr, = (207)7 f [0 - sajat. (2.62)
a /2 | B
Therefore,
T/2 .
o [a8 - Baldt
: -1 Y7
£ = (2mr) /5 PO (2.63)
I fa® + 8%])dt
-T/2

In the case of o(t) = 1, this result is i1dentical to the

power mean frequency estimator suggested by Bello (3). A
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block dlagram for this measurement system is ghown 1in
Figure 2.
Some insight into this result is gained when the

kernel of the numerator integral is rewritten as

[o® +8%] —F—p . 200, (2.64)

1+ (a/o.)2 e

The first factor is RE, the instantaneous power; the

second factor is w,, the instantaneous frequency, where

8
]

.
i Ic [6(t)]
- =:€% [tan-%(ﬁ/a)]. ..' o ;'(2;65)

The estimator then has the intultively consistent polar.

form
AN e '
Pr. = (2rT)”  A%w, dt. (2.66)
) a - | IfT/a' U
. That is,
N\ 4 Jr/2
pr. =1 [T Afr ar. (2.67)
& /2 | |

Note that A® ang f; are slowly varying functions of time.
Hence, welighting the 1nstanﬁanéous frequency by the power
at each instant of time and then averaging overitime-
yields the intuitively expected result of total power
times‘fé. A block dlagram 1mpiementation of this envelope-

frequency {or, polar form) is shown in Flgure 3.
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The Mean Square Bandwidth Estimator. The derivation
of B 1s analogous to that for %é; In this case, however,
an additional term must be added to the definition to re-
move the bilas 1ntroduced.by fhe window f&nctioh; The win-

dow function consists of two factors
p(t) = p(t)Gg(t).

Since o(t) 1s a smooth, absolutely integrable function,

the spreading of the spectrum, Bi,'induced by p(t) is

finite. Therefore, Bi can be subtracted after the esti-
‘mator is found. But, Bg, which is introduced by the

~discontinuities, 1is not finite and must be subtracted

early. Therefore, before defining'ﬁe, the spreading of
the spectrum due to GT(t) must be determined.

The average value of Bg can be found from its defi-

" nition:

2 e J’ £ |f (t)e” JQWf‘t at|® ar.  (2.68)

Introducing a new Variable T and changlng the order of

integration ylelds

=-(4 T"ljj’ ()G )

. j_ (jevf)zejew(T“t)fddedf. (2.69)

The 1ntegral over f is 5(T - t). Therefore, integrating

over T,
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E; = -(4w -1 f MO (t ) dt.  (2.70)

Note that the average bandwidth spreading is due to the
discontinuities and 1s, therefore, proportionalg on a
particular measurement, to_the_percentage of power in the
process at the instant:of_each_discohtiﬁuity. This-sﬁg~
gests that the amount of bias to be subtractéd is

2 _ _(nPmy-l ' 25-1s - |
Bp = -(4n°T) j; Go(t)ATPTHEL(t) at.  (2.71)
Hence, B can be defined as

T 0
{2.72)

B - (1) [ Plzglen)|® ar - (3,0° - B - B

~ LY

The quantities P and fa_haVeralfeady-been discussed. -B§
'is, by definition, |
2
lf jzvft atl ar |
._Bp . s - (2.73)
p(t) at |
J;_

“and, for any given window function, can be computed and
used in the estimator.
Let R
Car L mel 2 - ; a2
N=T Ir tPzp(2mr)zg(2ne) df - PBp.  (2.7h)
Consideration must now be glven to finding a time domain

expression for N.  This can be done by substituting the
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conjugate of the Fourier transform of ?(t)GT(t) for

(wa). Then, changing the order of integration yields
- -(4w )3 j ’*(t)GT(t j ( y27f) zT(ewf) 27T oar
+ (uw?T)‘l ft Gp(t)A%E () at. (2.75)

Or, integrating over_fjin the first integral and com=-

bining terms,
= -(4nr) 2 f  GT(t){g*(t)E(t) + 22*(5)%(t)éT(t)
+ B*(t ) (t)G (t) - 2%% plt )]dt.. o (2.76)
Chahging to the quadratﬁreform:_ o -
N ¥.4(4n2T)f? J; ¢T(t){[aa}+ 81 + 2[@& +_sé]GT(t)
+ 3feB - pa] + 25[ad - a&]éT(t53dt. - (2.77)

,N_cah be.simplified further through_inﬁegrétioh by parts.

In the imaginary part, this results_in

| T/E .'.. - '

-f (0B - Baldt
-T/2

FIN] = -(47°7) ([ - Ba]
: £ = ...T/2

+ 2 J Go(t){of - Balls(t + T/2) - 6(t - 1/2)]atk
| | (2.78)

Or, noting a factor of one half In the sifting property of

Dirac delta functions at the limit of an integral,

Fu] =



Aod
g

The same method used for the real part yields

- | - t o= T/2
PIN] = -(ung)‘lt[a& + 88] /
| t= /T2
/2 | S -
- j / 6% + 3°] at (2.79)
/2 _ | | :

%-2 f [aa + 88 1[8(¢ + T/2) - a(t - T/2)] dt}.
t _ ' g

The first and third terms cancel to leave

L | T /2 - | |
L§?[N].='(4WET)-1'I / C[4% & 8% dt.  (2.80)
| - B s
Hence,
T/2 .
| | /_/ [6° + B%) at .
e 2y-1 “=T/2 - _ 2 e
BS = (47°) PV Ea— - B, - (£)%. o
_I-T/z o + 87 at - (2.81)

This is proportional to Bello's estimator-ﬁi'for the mean

square bandwidth when p{t) = 1. ~This implementation is
shown in Figﬁre i, | o |

The polar form for B> is also of interest and can be

derived from the guadrature form by substitution of

£2
H

A cos[8(t)] (2.82)
and
8 = A sinf8(t)]. (2.83)

Recalling that
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a(t) . y=%5_t(_ o y=x2
y:fXd_'l' —"’P[ 2+Bp+f02]
ﬂtl_., y:g—?- e y= x2
2 2 2
P[B+B-p+fc] w=-§-

o —

Fl'G. 4 The Mean Square Bandwidth Estimator: Quadrature Form
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Be) = w, (288
the result is
/2 5, -
y [A oy + A ] at - - 5
2 2y-1 “-1/2  + - -
= (47°) IT/E e B, (£,)°. |
Y -T/2 R (2.85)

This form can also be implemented (see Figure 5) and will
give the same result as the quadraturé form of the esti-
ﬁator. |

Some intuitive analysis can be done on the polér
form of 8%, The first term in the numerator can be at-
tributed to the quasi—stationafy; random fregquency modu~
lation of the proceés; The second term is due to the ran-
dom amplitude modulation and is proportional to Bello's
estimator Dg in-the.special case of p(t) = 1 and 2 |
gauqsian process .

These results lndicate ‘that f and B° (or, Bello s
estimators fa and D1 for a rectangular wmndow functiOn)
are consistent with the classical estimators when the
periodogram 1s used for-é(f}._ Therefore, a careful error
analysls of the classical estimators is also appliéable
td these direct methods. Sincé'%a and %2 are obtained
.directly from fhe input data, they are eésier to imple~ .
ment than the classical approaches. Hence, these diréct
estimators should be used whenever an explicit estimate

of the power spectrum 1s unnecessary.
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y=/x dt = P[B%85+1;

Alt)y

FIG. 5 The Mean Square Bandwidth Estimator: Polar Form



