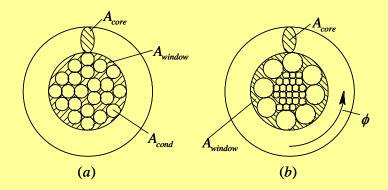

# Design of High-Frequency Inductors and Transformers

## **BASICS OF MAGNETIC DESIGN**


- The peak flux density  $B_{\text{max}}$  in the magnetic core to limit core losses, and
- ullet The peak current density  $J_{\max}$  in the winding conductors to limit conduction losses

## INDUCTOR AND TRANSFORMER CONSTRUCTION



## **AREA-PRODUCT METHOD**

## Core Window Area Awindow



$$A_{window} = \frac{1}{k_w} \sum_{y} \left( N_y A_{cond, y} \right)$$

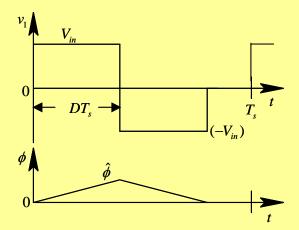
$$A_{cond,y} = \frac{I_{rms,y}}{J_{max}}$$

$$A_{window} = \frac{\sum_{y} (N_{y} I_{rms,y})}{k_{w} J_{\text{max}}}$$

## Core Cross-Sectional Area $A_{core}$

$$A_{core} = \frac{\hat{\phi}}{B_{\max}}$$

inductor:


$$\hat{\phi} = \frac{L\hat{I}}{N}$$

$$A_{core} = \frac{LI}{NB_{\text{max}}}$$

transformer:

$$\hat{\phi} = \frac{k_{conv}V_{in}}{N_1 f_s}$$

$$A_{core} = \frac{k_{conv}V_{y}}{N_{y}f_{s}B_{\text{max}}}$$



$$\begin{array}{c} \textbf{Core Area-Product} \\ A_p = A_{core} A_{window} \end{array}$$

inductor: 
$$A_p = \frac{L\hat{I}I_{rms}}{k_w J_{max} B_{max}}$$

transformer: 
$$A_p = \frac{k_{conv} \sum V_y I_{y,rms}}{k_w B_{max} J_{max} f_s}$$
 note:  $\frac{V_1}{N_1} = \frac{V_2}{N_2} = etc$ 

note: 
$$\frac{V_1}{N_1} = \frac{V_2}{N_2} = etc$$

## **Design Procedure Based on Area-Product** $A_p$

inductor: 
$$N = \frac{L\hat{I}}{B_{\text{max}}A_{core}}$$
  $L \simeq \frac{N^2}{\Re_g}$   $\Re_g \simeq \frac{\ell_g}{\mu_o A_{core}}$   $\ell_g = \frac{N^2 \mu_o A_{core}}{L}$ 

transformer: 
$$N_y = \frac{k_{conv}V_y}{A_{core}f_sB_{max}}$$

#### THERMAL CONSIDERATIONS

Designs presented here do not include eddy current losses in the windings, which can be very substantial due to proximity effects. These proximity losses in a conductor are due to the high-frequency magnetic field generated by other conductors in close proximity. To minimize these proximity losses suggests inductors with a single-layer construction. In transformers, windings can be interleaved to minimize these losses, as described in detail in [1]. Therefore, the area-product method discussed in this chapter is a good starting point, but the designs must be evaluated for temperature rise due to additional losses.

© Copyright Ned Mohan 2010

## Summary

• Design of High-Frequency Inductors and Transformers