
Introduction to MatLab: Circuit Analysis

Introduction

- MatLab can be a useful tool in many applications.
- We will learn how to analyze a simple electrical circuit, set the problem up as N equations in N unknowns, and transform the equations into a matrix formulation that MatLab can solve.

Topics

- Electrical Devices.
- · Kirchhoff's Laws.
- Analyzing a Resistor Network.
- Inverting Matrices.
- A MatLab Solution.

Electrical Devices

- Voltage and Current.
- · Sources.
- Resistors: Ohms Law.
- Capacitors: Charge Storage.
- Inductors: Current Storage.

Voltage and Current

- Voltage the force that pushes electrical current around a circuit. (Sometimes called "potential" as in potential energy.)
- Current the flow of electrical charge through a conductor. (Electrons flow backwards)
- Conductor the "pipe" through which an electrical current flows.

Sources

- Voltage Source: Fixed Voltage waveform
 - Direct Current: A battery
 - Alternating Current: A generator (sine waves)
- Current Source: Fixed current waveform (AC or DC)

Resistors

- A constriction in the flow of current
- Analogous to a small orifice in a water pipe, it takes a high pressure (voltage) to force a flow of water (current) through the resistance.
- Ohm's Law V=I*R

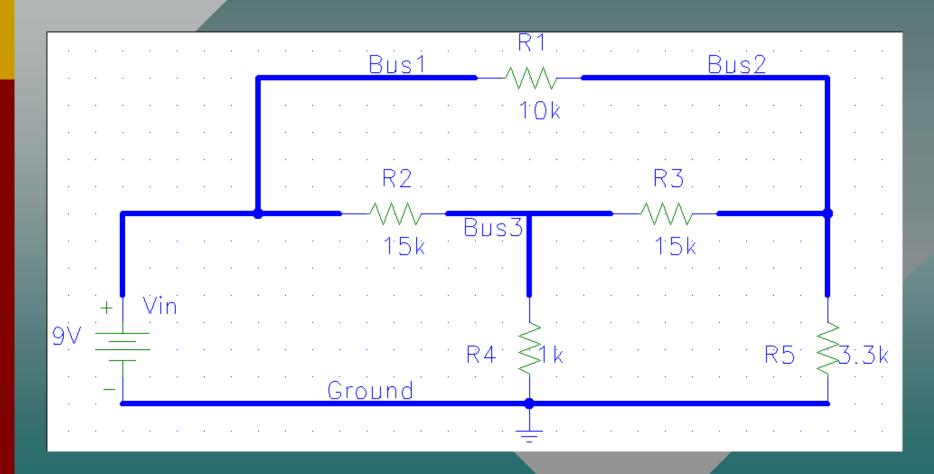
Resistor Color Codes

- First two stripes: Digits
- Third stripe: Power of 10
- Fourth stripe: Precision (none - 20%, silver - 10%, gold - 5%)
- 0 Black
- 1 Brown
- 2 Red
- 3 Orange
- 4 Yellow

- 5 Green
- 6 Blue
- 7 Violet
- 8 Gray
- 9 White

Capacitors

- A charge storage device
- Analogous to a water tank that is filled from the bottom. As the water level rises (charge divided by the cross sectional area – capacitance), the pressure (voltage) rises.
- Capacitor Law
 V=Q/C


Inductors

- A current storage device
- Analogous to the inertial effect of the flow of a fluid. The inductance is the mass that is moving.
- Inductor Law V=L*dI/dt (dI/dt is the "rate of change" in the current. This is analogous to velocity.)

Kirchhoff's Laws

- Conservation of Current:
 The sum of all currents into a "node" equals zero.
- Loop Law:
 The sum of all voltages around a loop equals zero.

A Resistor Network

Measurements

- Multimeter (Analog and Digital)
- Voltage measured relative to a reference, usually electrical ground.
- Resistance meter puts a small current through the resistor and uses Ohm's law.
- Current careful, the meter can be destroyed by an over-current.

Loop Equations

- Establish Independent Loop Currents
- Write Equation for Each Loop
 - Determine voltages in terms of the loop currents.
 - Sum to zero

(note: Alternative, use a set of "Node" equations)

Our Circuit – First Step

$$9v = 15k^*(I_1-I_2) + 1k^*(I_1-I_3)$$

 $0 = 10k^*I_2 + 15k^*(I_2-I_1) + 15k^*(I_2-I_3)$
 $0 = 1k^*(I_3-I_1) + 15k^*(I_3-I_2) + 3.3k^*I_3$

Our Circuit – Collecting Terms

$$9v = 16k^*I_1 - 15k^*I_2 - 1k^*I_3$$

 $0 = -15k^*I_1 + 40k^*I_2 - 15k^*I_3$
 $0 = -1k^*I_1 - 15k^*I_2 + 19.3k^*I_3$

Vectorizing N Equations

- Rewrite, ordering variables
- Formulate equivalent as an input column vector equals a coefficient matrix times an "unknowns" vector
- Solution: pre-multiply both sides by the inverse of the coefficient matrix.

Our Circuit - Vector Equation

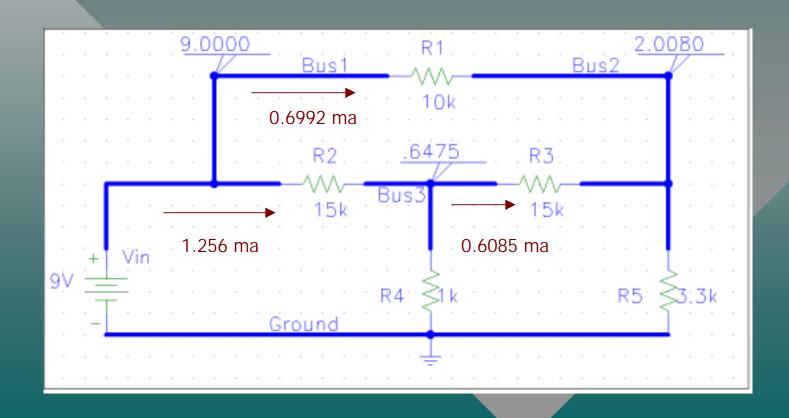
Inverting Matrices

- The inverse of a square matrix is that matrix which, when multiplied by the original matrix yields the Identity matrix
- In MatLab use "inv()".

Our Circuit - Inverse Matrix

Our Circuit – Currents

$$J_2 = 0.6992$$


0.6085

* 10-3 amps

Intro To PSpice

- Originally from Microsim, now part of OrCad.
- Demo/student CDROM is free at <u>www.orcad.com</u>, current version is 9.2, <u>Limited to small circuits and part library.</u>
- Graphical simulation of circuits and automated Printed Circuit board layout.

Introduction to MatLab: Circuit Analysis

