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State Feedback 
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Today’s lecture 

!  Review 
!  Controllability test 
!  Ackermann’s formula for controller design 

!  Today 
!  Observability 

!  Observerability test 
!  Observer design through Ackermann’s 

!  Separation principle 
!  Combining observers and controllers 
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Review: Controllability 

!  The eigenvalues of (A-BK) can be arbitrarily assigned 
when the system [A,B,C,D] is controllable. 

!  A system is controllable if there exists a control u(t) 
that can transfer any initial state x(0) to any desired 
state x(t) in a finite time T. 

!  The controllability matrix  

 must have rank n for the system [A,B,C,D] to be 
controllable. (SC is “full-rank”.) 

!  When SC is full-rank, det(SC)!0 

  

! 

SC = [B AB A2B ! An"1B]
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Review: Ackermann’s Formula 

!  The state feedback gain matrix 

that produces the desired characteristic equation 

is given by 

where 

1
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Output feedback 

!  Often, it is not feasible or even possible to 
measure all components of the state directly 

!  The output encapsulates a subset of the 
states which can be measured. 

!  For example, in the spring-mass-damper 
system, only the position of the mass is 
measured 

!  In this case, the remaining states must be 
accurately estimated using an observer 

EECE 360, v2.4 6 

Output feedback 

!  Output-based regulation 
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Output feedback 

!  Since the control law acts upon the estimated 
value of the state  

!  The observer must be designed such that the 
estimate of the state is guaranteed to 
converge to the actual value of the state 

!  The estimate is a dynamic process which 
evolves over time according to  

! 

u = "Kˆ x 

! 

e = x " ˆ x 

! 

˙ e = ˙ x " ˆ ˙ x 
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Output feedback 

!  We know that  

!  And so we create an estimated system 

!  Which is dependent on the difference between the 
actual output and the output value expected based 
on the current estimate of the state 

!  Therefore the error e evolves according to  

! 

˙ x = Ax + Bu
y = Cx

! 

ˆ ˙ x = Aˆ x + Bu + L(y "Cˆ x )

! 

˙ e = ˙ x " ˆ ˙ x = Ax " Aˆ x + L(Cx "Cˆ x )
= (A " LC)e
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!  The eigenvalues of (A-LC) can be arbitrarily assigned 
when the system is observable. 

!  A system is observable if there exists a finite time T 
such that, given the input u(t), the initial state x(0) 
can be determined from the observation history y(t). 

e(0) 

e(T) 

Observability 
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!  The eigenvalues of (A-LC) can be arbitrarily 
assigned when the system [A,B,C,D] is observable. 

!  A system is observable if there exists a finite time T 
such that, given the input u(t), the initial state x(0) 
can be determined from the observation history y(t). 

!  The observability matrix  

 must have rank n for the system [A,B,C,D] to be 
observable. (SO is “full-rank”.) 

  

! 

SO =

C
CA
CA2

!
CAn"1
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Observability 
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!  Note that the observer gain L is a matrix of 
dimension n x p, where the output matrix C is p x n 

!  For a SISO system, L is n x 1 
!  Therefore LC will be an n x n matrix that can be 

subtracted, element-wise, from A. 

!  By contrast, recall that the controller gain K is a 
matrix of dimension m x n, where the input matrix B 
is m x n 

!  For a SISO system, K is 1 x n 
!  Therefore BK will be an n x n matrix that can be 

subtracted, element-wise, from A. 

Observability vs. Controllability 
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!  System and input matrices 

!  Observability matrix 

!  To test for controllability, |SO|=1-0=1 
!  Therefore the system is observable. 

Example: Spring-Mass-Damper 

! 

A =
0 1

"
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M

"
b
M
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!  The open-loop observer poles are 
located where  

!  With the observer gain L, the closed-
loop poles are located where  

!  Because the system is observable, the 
poles of the closed-loop error dynamics 
can be placed anywhere in the complex 
plane. 

Example: Spring-Mass-Damper 

! 

0 = s2 +
b
M
s+

k
M

! 

0 = s2 + b
M + l1( )s+ b

M l1 + k
M + l2( )
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!  Controller:  
!  Regulate x -> 0 by choosing K such that  

 is stable. 
!  Controllability matrix SC=[B AB A2B … An-1B] 

!  Observer:  
!  Regulate e -> 0 by choosing L such that  

 is stable. 
!  Controllability matrix SO=[C; CA; CA2; …; CAn-1] 

Observability vs. Controllability 

! 

˙ x = (A " BK)x

! 

˙ e = (A " LC)e

“duality” 
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!  Controller:  
!  Design a control gain K =[k1 k2 k3 … kn] through 

Ackermann’s formula 

!  Observer:  
!  Design an observer gain L = [l1 l2 l3 … ln] T through 

Ackermann’s formula  

!  This takes advantage of the duality between the observer 
and controller 

Observability vs. Controllability 

  

! 

K = 0 … 0 1[ ]SC
"1q(A)

  

! 

L = q(A)SO
"1 0 … 0 1[ ]T
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Observer design: Ackermann’s 

Example: Consider the spring-mass-damper system 

!  Choose the closed-loop poles of the observer to be 4-10 times 
faster than the controller poles 

!  For now, assume that these poles occur at a desired damping ! 
and desired natural frequency "n, the characteristic equation is  

!  Compute the observability matrix and its inverse 

! 

q(s) = s2 + 2" # ns+# n
2

! 

SO =
C
CA
" 
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Ackermann’s Formula 

!  The characteristic equation in terms of A is 

! 

q(A) = A2 + 2" # nA +# n
2,  therefore the control gain is

L = A2 + 2" # nA +# n
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Ackermann’s Formula 

!  The observer gain to achieved the desired closed-
loop poles for the error dynamics is  

!  Note that the observer gain will drive the error 
dynamics to the desired closed-loop error dynamics 
poles.  ! 

L =
" b

M
k
M + b 2

M 2
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Ackermann’s Formula 

!  The closed-loop system is  

!  which has poles at 0=|s-(A-LC)|=s2+2!"ns+"n
2  

! 

˙ e = (A " LC)e
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!  Designing controller gains 
!     
!   K = acker(A,B,Pk) 

!  Designing observer gains 
!    
!  LT = acker(A’,C’,Pl) 
!  L = LT’ 

Using Matlab 

  

! 

K = 0 … 0 1[ ]SC
"1q(A)

  

! 

L = q(A)SO
"1 0 … 0 1[ ]T

Use ‘place’ for 
MIMO systems 

** Note that the  
transpose of both 
A and C required! 
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!  A system (A,B,C,D) is controllable if its 
controllability matrix SC is full rank. 

!  The closed-loop poles of a controllable system 
can be placed anywhere in the complex plane.   

!  Choose the desired pole location, then compute 
the gain K required to achieve those locations 

!  Ackermann’s formula for SISO systems (Matlab’s 
‘acker’) 

!  Matlab’s ‘place’ for MIMO systems 

Controllability Summary 
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!  A system (A,B,C,D) is observable if its 
observability matrix SO is full rank. 

!  The closed-loop poles of the error dynamics of an 
observable system can be placed anywhere in the 
complex plane.   

!  This allows arbitrarily fast convergence of the 
state estimate to the actual value of the state. 

!  Choose the desired error pole location, then 
compute the gain L required to achieve those 
locations 

!  Ackermann’s formula for SISO systems (Matlab’s 
‘acker’) with transposed matrices 

Observability Summary 
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Observers/controllers 

!  The dynamics for dx/dt and de/dt are 
coupled  
!  State dynamics 

!  Error dynamics 

! 

˙ x = Ax + Bu, u = "K(x + e)
= (A " BK)x + BKe

! 

˙ e = ˙ x " ˆ ˙ x , ˆ ˙ x = Aˆ x + Bu + L(y "Cˆ x )
= Ax + Bu " A(x + e) " Bu " LCx + LC(x + e)
= (A " LC)e
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Observers/controllers 

!  In state-space form, with 

!  The closed-loop system and observer 
dynamics are 

!  The eigenvalues of this system are 
 eig(A-BK) and eig(A-LC) 

! 
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!  Although the state dynamics and observer dynamics 
are coupled, the controller and the observer can 
be designed independently 

!  Standard procedure: 
!  Design a controller with gain K to place the roots of (A-BK) 

at desired locations in the LHP. 
!  Design an observer with gain L to place the roots of (A-LC) 

at desired locations in the LHP. 

!  Generally the observer poles are placed such that the 
observer dynamics are 4-10 times faster than the 
state dynamics. 

Separation Principle ** 
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!  Using the controller and observer 
designed previously 

Example: Spring-Mass-Damper 

! 
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!  The open-loop system poles are located 
where  

!  With controller gain K and observer gain 
L, the closed-loop poles of the extended 
system are located where  

Example: Spring-Mass-Damper 

! 

0 = s2 +
b
M
s+

k
M

! 

0 = s2 + 2"#ns+#n
2( ) s2 + 2" # ns+# n

2( )
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!  Because the system is controllable and 
observable, the closed-loop poles of the 
error dynamics and the system 
dynamics can be placed arbitrarily. 

!  However, the further away the closed-
loop poles are placed from the open-
loop poles, the higher the control effort. 

!  Additionally, excessively high observer 
gains can lead to amplification of noise 
inherent to the output measurements. 

Example: Spring-Mass-Damper 
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Summary 

!  Controllability matrix SC to test whether it is 
possible to put the poles of the closed-loop 
state dynamics in any desired location 

!  Observability matrix SO to test whether it is 
possible to put the poles of the closed-loop 
error dynamics in any desired location 

!  Duality of controller (with gain K) and 
observer (with gain L) 

!  Separation principle allows independent 
design of the controller and observer 


