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Lecture 10: Power system 
representation and equations
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Office Hours:
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One-line (single-line) diagrams

Almost all modern power systems are three-phase systems with the phases of equal 
amplitude and shifted by 120˚. Since phases are similar, it is customary to sketch 

t i i l f ith i l li ti ll th h fpower systems in a simple form with a single line representing all three phases of 
the real system.

Combined with a standard 
set of symbols for electrical 
components, such one-line 
diagrams provide a compact
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diagrams provide a compact 
way to represent information.
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One-line (single-line) diagrams

Example 10.1: a power system containing two synchronous machines, two loads, 
two busses, two transformers, and a transmission line to connect busses together.

All devices are protected by oil circuit breakers (OCBs). We notice that the diagram 
indicates the type of connection for each machine and transformer, and also the 
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points in the system connected to the ground.
The ground connections are important since they affect the current flowing in 
nonsymmetrical faults. These connection can be direct or through a resistor or 
inductor (they help reducing the fault current that flows in unsymmetrical faults, while 
having no impact on the steady-state operation of the system since the current 
through them will be zero). Machine ratings, impedances, and/or consumed (or 
supplied) powers are usually included in the diagrams.
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Per-phase, per-unit equivalent circuits

As we have learned, the easiest way to analyze a balanced three-phase circuit is by 
a per-phase equivalent circuit with all Δ connections converted in their equivalent Y 
connections. The solution obtained can be extended to three phases knowing that p g
the voltages and currents in other two phases would be the same except for the 120˚ 
phase shift.
An advantage of per-unit representation is that circuits containing transformers can 
be easily analyzed.
Real power systems are convenient to analyze using their per-phase (since the 
system is three-phase) per-unit (since there are many transformers) equivalent 
circuits. The per-phase base voltage, current, apparent power, and impedance are
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Per-phase, per-unit equivalent circuits

Where VLN,base is the line-to-neutral base voltage in the three-phase circuit (same as 
the base phase voltage in a Y-connected circuit) S1φ,base is the base apparent power 
of a single phase in the circuit.g p
The base current and impedance in a per-unit system can also be expressed in 
terms of the three-phase apparent power (which is 3 times the apparent power of a 
single phase) and line-to-line voltages (which is      times the line-to-neutral voltage):3
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In the per-unit system, all quantities are represented as a fraction of the base value:
actual valueQuantity in per unit

base value of quantity
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Per-phase, per-unit equivalent circuits

If any two of the four base quantities are specified, the other base values can be 
calculated. Usually, base apparent power and base voltage are specified at a point in 
the circuit, and the other values are calculated from them. The base voltage varies , g
by the voltage ratio of each transformer in the circuit but the base apparent power 
stays the same through the circuit.
The per-unit impedance may be transformed from one base to another as:

2

old new
new old

new old

V SPer unit Z per unit Z
V S

⎛ ⎞ ⎛ ⎞
−  = −  ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
(10.6.1)

Example 10.2: a power system consists of one synchronous generator and one 
synchronous motor connected by two transformers and a transmission line Create a
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synchronous motor connected by two transformers and a transmission line. Create a 
per-phase, per-unit equivalent circuit of this power system using a base apparent 
power of 100 MVA and a base line voltage of the generator G1 of 13.8 kV. Given that:
G1 ratings: 100 MVA, 13.8 kV, R = 0.1 pu, Xs = 0.9 pu;
T1 ratings: 100 MVA, 13.8/110 kV, R = 0.01 pu, Xs = 0.05 pu;
T2 ratings: 50 MVA, 120/14.4 kV, R = 0.01 pu, Xs = 0.05 pu;
M ratings: 50 MVA, 13.8 kV, R = 0.1 pu, Xs = 1.1 pu;
L1 impedance: R = 15 Ω, X = 75 Ω.
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Per-phase, per-unit equivalent circuits

To create a per-phase, per-unit equivalent circuit, we need first to calculate the 
impedances of each component in the power system in per-unit to the system 
base The system base apparent power is Sb = 100 MVA everywhere in the
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base. The system base apparent power is Sbase = 100 MVA everywhere in the
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power system. The base voltage in 
the three regions will vary as the 
voltage ratios of the transformers 
that delineate the regions. These 
base voltages are:

(10.7.1)
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The corresponding base impedances in each region are:

Per-phase, per-unit equivalent circuits
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The impedances of G1 and T1 are specified in per-unit on a base of 13 8 kV and 100
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The impedances of G1 and T1 are specified in per unit on a base of 13.8 kV and 100 
MVA, which is the same as the system base in Region 1. Therefore, the per-unit 
resistances and reactances of these components on the system base are 
unchanged:

RG1,pu = 0.1 per unit
XG1,pu = 0.9 per unit
RT1,pu = 0.01 per unit
XT1,pu = 0.05 per unit
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Per-phase, per-unit equivalent circuits

There is a transmission line in Region 2 of the power system. The impedance of the 
line is specified in ohms, and the base impedance in that region is 121 Ω. Therefore, 
the per-unit resistance and reactance of the transmission line are:p
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The impedance of T2 is specified in per-unit on a base of 14.4 kV and 50 MVA in 
Region 3. Therefore, the per-unit resistances and reactances of this component on 
the system base are:

(10.9.1)
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the system base are:
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Per-phase, per-unit equivalent circuits

The impedance of M2 is specified in per-unit on a base of 13.8 kV and 50 MVA in 
Region 3. Therefore, the per-unit resistances and reactances of this component on 
the system base are:y
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Therefore, the per-
phase, per-unit 
equivalent circuit of this 
power system is shown:
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Writing node equations for 
equivalent circuits

Once the per-phase, per-unit equivalent circuit of a power system is created, it can 
be used to find the voltages, currents, and powers present at various points in a 
power system. The most common technique used to solve such circuits is nodal p y q
analysis.
In nodal analysis, we use Kirchhoff’s current law equations to determine the voltages 
at each node (each bus) in the power system, and then use the resulting voltages to 
calculate the currents and power flows at various points in the system.

A simple three-phase power system with three 
b t d b th t i i li
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busses connected by three transmission lines. 
The system also includes a generator 
connected to bus 1, a load connected to bus 
2, and a motor connected to bus 3.

12

Writing node equations for 
equivalent circuits

The per-phase, per-unit 
equivalent circuit of thisequivalent circuit of this 
power system:
The busses are labeled as 
nodes (1), (2), and (3), 
while the neutral is labeled 
as node (n).
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Note that the per-unit series impedances of the transformers and the transmission 
lines between each pair of busses have been added up, and the resulting 
impedances were expressed as admittances (Y=1/Z) to simplify nodal analysis.
Shunt admittance at each bus is shown between the bus and the neutral. This 
admittance can include the shunt admittance of the line models and shunt 
admittance associated with any generators or loads on a bus.
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Writing node equations for 
equivalent circuits

The voltages between each bus and neutral are represented by single subscripts 
(V1, V2) in the equivalent circuit, while the voltages between any two busses are 
indicated by double subscripts (V12).y p ( 12)
The generators and loads are represented by current sources injecting currents into 
the specific nodes. Conventionally, current sources always flow into a node meaning 
that the power flow of generators will be positive, while the power flow for motors will 
be negative.
According to Kirchhoff’s current flow law (KCL), the sum of all currents entering 
any node equals to the sum of all currents leaving the node. KCL can be used to 
establish and solve a system of simultaneous equations with the unknown node 
voltages
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voltages.
Assuming that the current from the current sources are entering each node, and that 
all other currents are leaving the node, applying the KCL to the node (1) yields:

( ) ( )1 2 1 3 1 1a b dV V Y V V Y VY I− + − + = (10.13.1)
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Writing node equations for 
equivalent circuits

Similarly, for the nodes (2) and (3):

( ) ( )2 1 2 3 2 2a c eV V Y V V Y V Y I− + − + = (10.14.1)

( ) ( )3 1 3 2 3 3b c fV V Y V V Y V Y I− + − + = (10.14.2)

Rearranging these equations, we arrive at:
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(10.14.3)
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( )1 2 3 3b c b c fY V Y V Y Y Y V I+ + +
In matrix form:

1 1

2 2

3 3

a b d a b

a a c e c

b c b c f

Y Y Y Y Y V I
Y Y Y Y Y V I
Y Y Y Y Y V I

⎡ ⎤+ + − − ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + + − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − + + ⎣ ⎦ ⎣ ⎦⎣ ⎦

(10.14.4)
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Writing node equations for 
equivalent circuits

Which is an equation of the form:

bY V I= (10.15.1)busV ( )

where Ybus is the bus admittance matrix of a system, which has the form:

11 12 13

21 22 23

31 32 33

bus

Y Y Y
Y Y Y Y

Y Y Y

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Yb has a regular form that is easy to calculate:

(10.15.2)
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Ybus has a regular form that is easy to calculate:
1) The diagonal elements Yii equal the sum of all admittances connected to node i.
2) Other elements Yij equal to the negative admittances connected to nodes I and j.

The diagonal elements of Ybus are called the self-admittance or driving-point 
admittances of the nodes; the off-diagonal elements are called the mutual 
admittances or transfer admittances of the nodes.

16

Writing node equations for 
equivalent circuits

Inverting the bus admittance matrix Ybus yields the bus impedance matrix:

1
b bZ Y −= (10.16.1)bus busZ Y

Simple technique for constructing Ybus is only applicable for components that are not 
mutually coupled. The technique applicable to mutually coupled components can be 
found elsewhere.
Once Ybus is calculated, the solution to (10.15.1) is

1
busV Y I− = 

( )

(10.16.2)
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bus

busV I = Ζ
or

(10.16.3)
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Solving power system node 
equation with MATLAB™

A number of techniques can be used to solve systems of simultaneous linear 
equations, such as substitution, Gaussian elimination, LU factorization, etc. MATLAB 
has build-in system solvers that can be used efficiently.y y
A system of n linear equations in n unknowns

Ax b= (10.17.1)

where A is an n x n matrix and b is and n-element column vector; the solution will be

1x A b−= (10.17.2)
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where A-1 is the n x n matrix inverse of A.
Using MATLAB, the solution to (10.17.1) can be evaluated, for instance, by direct 
evaluation of inverse as in (10.17.2), or via the left division (\).
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Solving power system node 
equation with MATLAB™

For example, the system

1 2 31.0 0.5 0.5 1.0x x x+ − =

1 2 3

1 2 3

0.5 1.0 0.25 2.0
0.5 0.25 1.0 1.0

x x x
x x x

+ + =

− + + =

Can be solved by the following MATLAB code:

>>   A = [1, 0.5, -0.5; 0.5, 1, 0.25; -0.5, 0.25, 1];
>>   b = [1; 2; 1];
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>>   x = inv(A) * b;
or
>>   x = A\b;
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Solving power system node 
equation with MATLAB™

Example 10.3: a 
power system 
consists of four 
busses 
interconnected by 
five transmission 
lines. It includes 
one generator 
attached to bus 1 
and one 
synchronous
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synchronous 
motor connected 
to bus 3.

20

Solving power system node 
equation with MATLAB™

The per-phase, per-unit equivalent circuit 
is shown.

We observe that all impedances are 
considered as pure reactances to 
simplify the case since reactance is 
much larger than resistance in typical 
transformers, synchronous machines, 
and overhead transmission lines.

ELEN 3441 Fundamentals of Power Engineering Spring 2009

Find the per-unit voltage at each bus in 
the power system and the per-unit 
current flow in line 1.
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Solving power system node 
equation with MATLAB™

The first step in solving for bus voltages is to convert the voltage sources into the 
equivalent current sources by using the Norton’s theorem. Next, we need to convert 
all of the impedance values into admittances and form the admittance matrix Ybusp bus
then use it to solve for the bus voltages, and finally use voltages on buses 1 and 2 to 
find the current in line 1.

First, we need to find the Norton equivalent circuits for the 
combination of G1 and T1. The Thevenin impedance of this 
combination is ZTH = j1.1, and the short-circuit current is

1.1 10 1.0 80
1 1

oc
sc

VI
Z j

∠ °
= = = ∠ − ° (10.21.1)
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1.1THZ j

The Norton’s equivalent circuit.
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Solving power system node 
equation with MATLAB™

The combination of M3 and T2 is shown.
The Thevelin impedance of this combination is ZTH = j1.6, and 
th h t i it t ithe short-circuit current is

0.9 22 0.563 112
1.6

oc
sc

TH

VI
Z j

∠ − °
= = = ∠ − °

The Norton’s equivalent 
circuit.

(10.22.1)
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Solving power system node 
equation with MATLAB™

The per-phase, per-unit circuit with the 
current sources included
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The same circuit with impedances 
converted to admittances

24

Solving power system node 
equation with MATLAB™

The resulting admittance matrix is:

12.576 5.0 0 6.667j j j−⎡ ⎤
⎢ ⎥5.0 12.5 5.0 2.5

0 5.0 10.625 5.0
6.667 2.5 5.0 14.167

bus

j j j j
Y

j j
j j j j

⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦

The current vector for this circuit is:

1.0 80∠ − °⎡ ⎤
⎢ ⎥

(10.24.1)

ELEN 3441 Fundamentals of Power Engineering Spring 2009

0
0.563 112

0

I
⎢ ⎥
⎢ ⎥=
⎢ ⎥∠ − °
⎢ ⎥
⎣ ⎦

(10.24.2)



3/5/2009

13

25

Solving power system node 
equation with MATLAB™

The solution to the system of equations will be

0 989 0 60∠ °⎡ ⎤

1

0.989 0.60
0.981 1.58
0.974 2.62
0.982 1.48

busV Y I V−

∠ − °⎡ ⎤
⎢ ⎥∠ − °⎢ ⎥= =
⎢ ⎥∠ − °
⎢ ⎥∠ − °⎣ ⎦

The current in line 1 can be calculated from the equation:

(10.25.1)
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( ) ( ) ( )1 1 2 1 0.989 0.60 0.981 1.58 5.0
0.092 25.16

lineI V V Y j= − = ∠ − ° − ∠ − ° ⋅ −

= ∠ − °
(10.25.2)


