EI4 End of Chapter Problems

EDCP 8.1

$$H(s) = \frac{1}{1 + \left(s/jw_s\right)^{2N}}$$

a third-order lowpass Butterworth filter after replacing s by jw.

EDCP 8.2

Consider a series RLC circuit where the output voltage y(t) is taken across the resistor and the input is the voltage x(t).

- 1. Find the transfer function of this filter.
- 2. What is this type of filter?

EOCP 8.3

An elliptic bandstop filter is to be designed. It should fulfill the following specifications:

 $1 \ge |H(jw)|^2 \ge 0.95 \quad w \le 1200 \text{ and } w \ge 1800$ $|H(jw)|^2 \le 0.02 \quad 800 \ge w \ge 2200$

- 1. Estimate the order and the cut-off frequencies.
- 2. Find the transfer function of the filter.

EOCP 8.4

Plot the magnitude and phase responses of Butterworth, Chebyshev Type I, Chebyshev Type II, elliptic, and Bessel LP filters. Let the order be 5 and the cut-off frequency be 1. Assume $R_p = 3$ dB and $R_s = 60$ dB. Comment on the phase response of Bessel filter compared with others.

EOCP 8.5

Design a bandstop filter that has a bandwidth β of 1000 rad/sec that can reject the component sin(1414*t*) from the following signal

 $x(t) = \sin(500t) + \sin(1414t) + \cos(2500t)$

FOCP 8.6

Consider the following transfer function

$$H(s) = \frac{as^2 + bs + c}{s^2 + ds + e}$$

Design by finding the values of *a*, *b*, *c*, *d* and *e* the filters in the table below. (Hint: The transfer function above is for a Butterworth filter.)

Туре	w_{n}	a	b	с	d	e
LP	1000		4			
HP	1000					
BP	1000, 2000					
BS	1000, 2000					

FOCP 8.7

A lowpass filter has a desired peak passband ripple of 0.2 dB, and a minimum stopband attenuation of 40 dB; what are the values of ε and δ ?

EOCP 8.8

Find and graph the frequency response of the transfer functions given by

$$H(s) = \frac{0.2s^2 + 1}{s^2 + 0.1s + 1}$$
$$H(s) = \frac{s^2}{s^2 + 0.1s + 1}$$
$$H(s) = \frac{1}{s^2 + s + 1}$$
$$H(s) = \frac{s}{s^2 + s + 1}$$

$$H(s) = \frac{s}{s^2 + 0.1s + 1}$$

What type of filters are these systems?