Discrete-Time Signals:

Time-Domain Representation
 Signals represented as sequences of
numbers, called samples

o Sample value of a typical signal or sequence
denoted as x[n] with n being an integer In
the range —co<n<ow

 x[n] defined only for integer values of n and
undefined for noninteger values of n

* Discrete-time signal represented by {x|n]}
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Discrete-Time Signals:
Time-Domain Representation

 Discrete-time signal may also be written as
a sequence of numbers Inside braces:

{x[n]}:{...,—0.2,2.T2,1.1,O.2,—3.7,2.9,...}

e In the above, X[-1] =-0.2, x[0] = 2.2, x[1] =1.1,
etc.

e The arrow Is placed under the sample at
time indexn=20
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Discrete-Time Signals:
Time-Domain Representation

» Graphical representation of a discrete-time
signal with real-valued samples is as shown

below:
x[-5]
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Discrete-Time Signals:

Time-Domain Representation

 In some applications, a discrete-time
sequence {x[n]} may be generated by
periodically sampling a continuous-time
signal x,(t)at uniform intervals of time

Xﬂf—j T \

fxarr}
T ¢
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Discrete-Time Signals:

Time-Domain Representation
e Here, n-th sample Is given by

X[N] =X, (t),_,7 =Xa(nT), n=...,—2,-101,...

e The spacing T between two consecutive

samples Is called the sampling interval or
sampling period

e Reciprocal of sampling interval T, denoted
as Fr, Is called the sampling frequency:

1
Ty
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Discrete-Time Signals:

Time-Domain Representation
« Unit of sampling frequency Is cycles per
second, or hertz (Hz), if T Is In seconds
* \WWhether or not the sequence {x|n]} has
been obtained by sampling, the quantity

X[n] i1s called the n-th sample of the
sequence

o {X[n]} is a real sequence, If the n-th sample
X[n] is real for all values of n

o Otherwise, {x|n]} I1s a complex sequence
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Discrete-Time Signals:
Time-Domain Representation

o A complex sequence {x[n]} can be written
as {X[n]}={Xreln]}+ KXim[n]}where
Xre[N] and X;n[N] are the real and imaginary
parts of x[n]

e The complex conjugate sequence of {x[n]}
is given by {x*[n]}={Xre[n]}— H{Xim[n]}

o Often the braces are ignored to denote a
sequence If there I1s no ambiguity
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Discrete-Time Signals:

Time-Domain Representation
o Example - {X[n]}={co0s0.25n} is a real
sequence
e {y[n]}={e!%3"} is a complex sequence
* \We can write
{y[n]}={cos0.3n+ Jsin0.3n}
={c0s0.3n}+ j{sin0.3n}
where {y,.[n]}={c0s0.3n}
{Yim[N]} = {sin0.3n}
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Discrete-Time Signals:
Time-Domain Representation
e Example -

twn]} ={cos0.3n} — j{sin0.3n} = {e~1%3M
IS the complex conjugate sequence of {y[n]}
e That s,

win]} =ty *[n]}
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Discrete-Time Signals:

Time-Domain Representation
wo types of discrete-time signals:

- Sampled-data signals in which samples
are continuous-valued

- Digital signals in which samples are
discrete-valued

Signals in a practical digital signal
processing system are digital signals
obtained by quantizing the sample values
either by rounding or truncation
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Discrete-Time Signals:
Time-Domain Representation

e Example -
2 <4
ZED— ............. T ................. g_ ............... o T
time, t | time, t
Digital signal

Boxedcar signal
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Discrete-Time Signals:
Time-Domain Representation

A discrete-time signal may be a finite-
length or an infinite-length sequence

 Finite-length (also called finite-duration or
finite-extent) sequence Is defined only for a
finite time interval: Ny <n<N,
where —owo < Nl and N2 < oo WIith Nl < N2
e Length or duration of the above finite-
length sequence IS N =N, —N; +1
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Discrete-Time Signals:
Time-Domain Representation

o Example - x[n]= nz, —3<n<4 isa finite-
length sequence of length 4 —(-3)+1=8

y[n]=cos0.4n is an infinite-length sequence

13 Copyright © 2005, S. K. Mitra



Discrete-Time Signals:
Time-Domain Representation

* A length-N sequence is often referred to as
an N-point sequence

* The length of a finite-length sequence can
be increased by zero-padding, I.e., by
appending it with zeros

14 Copyright © 2005, S. K. Mitra



Discrete-Time Signals:
Time-Domain Representation

o Example -

2
_Jn°, =3<n<4
Xe[”]‘{o, 5<n<8

Is a finite-length sequence of length 12
obtained by zero-padding x[n]=n?, —-3<n<4
with 4 zero-valued samples
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Discrete-Time Signals:
Time-Domain Representation

* A right-sided sequence x|n] has zero-
valued samples for n < N

N |
L

A right-sided sequence

* If Ny >0,a right-sided sequence Is called a
causal sequence
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Discrete-Time Signals:
Time-Domain Representation

A left-sided sequence x[n] has zero-valued
samples for n> N,

A

A left-sided sequence

» If N, <0,a left-sided sequence Is called a
anti-causal sequence
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Discrete-Time Signals:
Time-Domain Representation

e Size of a Signal

Given by the norm of the signal
L,-norm

o 1/p
o= St

1=—00

where p IS a positive integer
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Discrete-Time Signals:
Time-Domain Representation

* The value of p is typically 1 or 2 or «

L£o-N0Orm

g
IS the root-mean-squared (rms) value of

X[n]}
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Discrete-Time Signals:
Time-Domain Representation

£q-norm | x|,
IS the mean absolute value of {x[n]}

Lop-norm |x|__
IS the peak absolute value of {x[n]}, I.e.

oo =¥ g
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Discrete-Time Signals:
Time-Domain Representation

Example

e Let{y[n]},0<n<N —1, be an approximation of

{X[n]}, 0<n<N-1

* An estimate of the relative error is given by the
ratio of the £,-norm of the difference signal and

the £o-norm of {x[n]}:
(N-1 )
> |yln]—x[n]
Erel = nz()N_l 5
> |xln]

21 \ n=0

\

J

1/p
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Operations on Sequences

* A single-Input, single-output discrete-time
system operates on a sequence, called the
Input sequence, according some prescribed
rules and develops another sequence, called
the output sequence, with more desirable
properties

Discrete-time
X[n] system y[n]

Input sequence Output sequence
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Operations on Sequences

For example, the input may be a signal
corrupted with additive noise

Discrete-time system is designed to
generate an output by removing the noise
component from the input

In most cases, the operation defining a
particular discrete-time system Is composed
of some basic operations
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Basic Operations

* Product (modulation) operation:

X[n] 4’@{3—' y[n]
— Modulator yln]=X[n]-w[n]

win]

* An application is in forming a finite-length
sequence from an infinite-length sequence
by multiplying the latter with a finite-length
sequence called an window sequence

e Process called windowing
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Basic Operations

« Addition operation:

x[n] %@—' y[n]
— Adder yln]=X[n]+w[n]

w[n]

 Multiplication operation

A
~ Multiplier  xin]—{ >yl y[n]=A-x[n]
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Basic Operations

» Time-shifting operation: y[n]=x[N—N]

where N Is an integer

e If N >0, Itisdelaying operation

— Unit delay

X[n] —1z

-1

——yn]  y[n]=Xx[n-1]

o IfN <0, Itisan advance operation

. X[n] —
— Unit advance

26

L

— y[n] yIn]=Xx[n+1]
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Basic Operations

 Time-reversal (folding) operation:
y[n]= X[-n]

* Branching operation: Used to provide
multiple copies of a sequence

x[n] > I > X[n]
x[n]
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Basic Operations

 Example - Consider the two following
sequences of length 5 defined for 0 <n < 4:
{an]}={3 4 6 -9 0}

{b[n]}={2 -1 4 5 -3}
* New sequences generated from the above

two sequences by applying the basic
operations are as follows:
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Basic Operations

{cn]}={al
{dn]}={al
{e;nj}zg{a[n]}={4.5 6 9 —13.5 0}

n

n

b[N]}={6 —4 24 —45 Q)
+b[n]}={5 3 10 -4 —3)

* As pointed out by the above example,
operations on two or more sequences can be
carried out If all sequences involved are of
same length and defined for the same range
of the time Index n
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Basic Operations

 However If the sequences are not of same
length, in some situations, this problem can
be circumvented by appending zero-valued
samples to the sequence(s) of smaller
lengths to make all sequences have the same
range of the time index

e Example - Consider the sequence of length
3defined for0<n<2: {f[n]}={-2 1 -3}
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Basic Operations

e \We cannot add the length-3 sequence {f[n]}
to the length-5 sequence {a[n]} defined
earlier

* \We therefore first append {f[n]} with 2
zero-valued samples resulting in a length-5
sequence {fy[n]}={-2 1 -3 0 0}

e Then
{oln]}={aln]}+{tf[n]}={1 5 3 -9 0}
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Basic Operations

Ensemble Averaging

o A very simple application of the addition
operation in improving the quality of
measured data corrupted by an additive
random noise

* |n some cases, actual uncorrupted data

vector s remains essentially the same from
one measurement to next
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Basic Operations

 \While the additive noise vector IS random
and not reproducible

» Let d; denote the noise vector corrupting
the iI-th measurement of the uncorrupted
data vector s:

Xi =S‘|‘di
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Basic Operations

* The average data vector, called the
ensemble average, obtained after K
measurements Is given by

K

K

=L Yx; = Y(sHd) =8+ zd

K
=1 z 1

 For large values of K, x_,, IS usuallya

reasonable replica of the desired data vector
S
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Basic Operations

 Example

Original uncorrupted data

Amplitude

Time index n

Noise corrupted data

| e o

=)

Amplitude

| i

) . . . .
0 10 20 30 40 50

Time index n

35

Amplitude

0.5

Amplitude

Noise

2

10 20 30 40 50
Time index n

Ensemble average

i

10 20 30 40 50
Time index n
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Basic Operations

e \We cannot add the length-3 sequence {f[n]}
to the length-5 sequence {a[n]} defined
earlier

* \We therefore first append {f[n]} with 2
zero-valued samples resulting in a length-5
sequence {fy[n]}={-2 1 -3 0 0}

e Then
{oln]}={aln]}+{tf[n]}={1 5 3 -9 0}
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Combinations of Basic
Operations

e Example -

B _l _l -
x[n] M 2 z N 7

<7°‘1 vz, <7°‘4
+

y[n] =y X[n]+ aoX[n —1] + azX[n — 2]+ a4 X[n — 3]
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Sampling Rate Alteration

 Employed to generate a new sequence y[n]
with a sampling rate Fr higher or lower

than that of the sampling rate F of a given
sequence X|[n]

o Sampling rate alteration ratio is R :i

e ITR > 1, the process called interpolation
e If R <1, the process called decimation
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Sampling Rate Alteration

 In up-sampling by an integer factor L > 1,

L —1equidistant zero-valued samples are
Inserted by the up-sampler between each
two consecutive samples of the input

39

sequence x[n]:

‘x[n/L], n=0,£L,+2L,---
Xy[n] =+ .

- 0, otherwise

X[n] _’T L — Xu [n]
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Sampling Rate Alteration

* An example of the up-sampling operation

Input Sequence Output sequence up-sampled by 3
1 ‘ ‘ ‘ : ' '
® 5 o g ! © o

T i ] TOT T h .
T 1 I |

1

Amplitude

S —
Amplitud

g

i ‘

L

‘

L8

‘

‘

oG

‘

- ‘
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Sampling Rate Alteration

 In down-sampling by an integer factor

41

M > 1, every M-th samples of the input
sequence are kept and M —1 in-between

samples are removed:
y[n]=x[nM]

X[n] —{| m— y[n]
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Sampling Rate Alteration

* An example of the down-sampling
operation

42
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Classification of Sequences
Based on Symmetry

e Conjugate-symmetric sequence:
X[n] = x*[-n]
If x[n] is real, then it Is an even sequence

- L1 L m 1l | -
T T I

An even sequence
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Classification of Sequences
Based on Symmetry

e Conjugate-antisymmetric sequence:
X[n]=—-x*[-n]
I x[n] is real, then it Is an odd sequence

An odd sequence
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Classification of Sequences
Based on Symmetry

|t follows from the definition that for a
conjugate-symmetric sequence {x[n]}, x[0]
must be a real number

o Likewise, It follows from the definition that

for a conjugate anti-symmetric sequence
{y[n]}, y[0] must be an imaginary number

 From the above, It also follows that for an
odd sequence {w[n]}, w[0] =0
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Classification of Sequences
Based on Symmetry

e Any complex sequence can be expressed as
a sum of Its conjugate-symmetric part and
ItS conjugate-antisymmetric part:

X[n] = Xcs[N]+ XcalN]
where

oo [M] = L (] + X*[])

tcal] = 2 (] - <[ -n])
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Classification of Sequences
Based on Symmetry

e Example - Consider the length-7 sequence
defined for —3<n<3:

{g[n]}:{09 1+j4a _2+j3a 4$J27 _5_j69 _jza 3}

* |ts conjugate sequence Is then given by

{g*[n]}:{oa 1_149 _2_139 4_%12’ _5+J69 J29 3}
e The time-reversed version of the above Is

(g *[-n]}=1{3, j2, -5+j6, 4+j2, —2—j3, 1-j4, 0}
T
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Classification of Sequences
Based on Symmetry

» Therefore {ges[n]}=7{gln]+g*[-n]}

={1.5, 0.5+)3, -3.5+)4.5, 4, —-3.5—-j4.5, 05-)3, 1.5}
1

» Likewise {gca[nl}=2{g[n]-g*[-n]}

={-1.5, 0.5+j, 1.5-j1.5, —j2, -1.5-j1.5, —0.5—j, 1.5}
1
e |t can be easily verlfled that gcs[n] = gCS [—n]

and gca[n] — _gca[ n]
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Classification of Sequences
Based on Symmetry

« Any real sequence can be expressed as a
sum of its even part and its odd part:

X[n] = Xey[N]+ Xoq [N]
where

Xey[N] = 2(x[n]+x[ n])
1

Xod [N] = Z(X[n] x[-n])
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Classification of Sequences

Based on Symmetry
* A length-N sequence X[n],0<n<N -1,
can be expressed as x[n]= Xpes[N]+ Xpcaln]
where
Xpes[N1=2(X[N]+ x*[(-n)y 1), 0<n<N-1,

IS the periodic conjugate-symmetric part
and
XpealN=3(X[N]=x*[(-n)n 1), 0<n<N -1,

IS the periodic conjugate-antisymmetric
s part
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Classification of Sequences

Based on Symmetry

 For areal sequence, the periodic conjugate-
symmetric part, Is a real sequence and Is
called the periodic even part Xpe[n]

* For a real sequence, the periodic conjugate-
antisymmetric part, Is a real sequence and Is
called the periodic odd part X,,[n]
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Classification of Sequences

Based on Symmetry

* A length-N sequence x|n] is called a
periodic conjugate-symmetric sequence If

X[n]=X*[{(=n)ny]1=X*[N —n]

and Is called a periodic conjugate-
antisymmetric sequence If

X[n]=—x*[{-N)N]=—X*[N —n]
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Classification of Sequences
Based on Symmetry

A finite-length real periodic conjugate-
symmetric sequence Is called a symmetric
seguence

A finite-length real periodic conjugate-
antisymmetric sequence Is called a
antisymmetric seguence
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Classification of Sequences
Based on Symmetry

o Example - Consider the length-4 sequence

defined for 0<n<3:
{U[n]}:{1+ J49 _2+139 4_J29 _5_J6}

e |ts conjugate sequence Is given by
{U*[n]}:{l_ J49 —2- 139 4+ 129 — 90+ J6}

e To determine the modulo-4 time-reversed
version {u *[{(—n), ]} observe the following:
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Classification of Sequences
Based on Symmetry
U*[(-0)4]=u*[0]=1-j4
U*[(=D,4]=u*[3]=-5+ |6
U*[(=2)4]=u*[2]=4+ j2
U*[(=3)4]=u*[1]=-2-j3

e Hence
{U*[<_n>4]}:{1_ 149 _5+J69 4+J29 _2_13}
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Classification of Sequences
Based on Symmetry

e Therefore
(Upes[N1} = 2 {uln]+u*[(~n)4])

— {1, —35+ j45, 4, —3.5— j4.5)

o Likewise
(UpcalN1} = {uln]—u* [(=n)4 1)
={j4, 1.5—-j15 -2, —1.5-jl1.5)

o6 Copyright © 2005, S. K. Mitra



Classification of Sequences
Based on Periodicity

* A sequence X[n] satisfying &[n]=X[N+kN]
Is called a periodic sequence with a period N
where N Is a positive integer and k Is any
Integer

e Smallest value of N satisfying X[n]= X[n+kN]
Is called the fundamental period
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Classification of Sequences
Based on Periodicity

o Example -

o Q2 o o

e “TH_,: “TH_,: TTTQ_H__--;

6 -5 4 -3-2-1 01 2 3 4 56 7 8 9 10 1112 13 14 15

» A sequence not satisfying the periodicity
condition is called an aperiodic sequence
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Classification of Sequences:
Energy and Power Signals

» Total energy of a sequence x[n] is defined by
< 2
Ex = 2X[n]
N=—o0

« An Infinite length sequence with finite sample
values may or may not have finite energy

A finite length sequence with finite sample
values has finite energy
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Classification of Sequences:
Energy and Power Signals

* The average power of an aperiodic
sequence Is defined by

K 2
P, = lim Z\x[n]\
-K

K—>002K 1

* Define the energy of a sequence x[n] over a
finite interval —K <n< K as

K 2
= Y X[n]
n=—K
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Classification of Sequences:

Energy and Power Signhals

e Then
P, = lim E,

K—>002K +1
* The average power of a periodic sequence

X[n] with a period N is given by
N
P, =" \X[n]\
n 0
* The average power of an infinite-length

sequence may be finite or infinite
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Classification of Sequences:
Energy and Power Signhals

« Example - Consider the causal sequence
defined by

%(3(—1)”, n>0
=0, n<0
* Note: x[n] has infinite energy
* |ts average power Is given by
1
P, = lim (9 le— lim =45
Kow2K +1\ =0/ Koo 2K +1
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Classification of Sequences:

Energy and Power Signals
 An Infinite energy signal with finite average
power Is called a power signal

Example - A periodic sequence which has a
finite average power but infinite energy

A finite energy signal with zero average
power Is called an energy signal

Example - A finite-length sequence which
has finite energy but zero average power
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Other Types of Classifications

o A sequence x|[n] is said to be bounded if
X[n] £B, <®

o Example - The sequence x[n] =c0s0.3nn Is a
bounded sequence as

X[n] =|c0s0.3rn <1
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Other Types of Classifications

o A sequence x|[n] is said to be absolutely
summable If

Z\x[n]\ < 00

N=—00

 Example - The sequence

0.3". n>0
0, n<0

IS an absolutely summable sequence as
> 03" = L 142857 <w
0 1-0.3
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Other Types of Classifications

» A sequence x|[n] is said to be square-
summable iIf

> IX[n]? < oo

N=—o0

e Example - The sequence
sin0.4n
h{n]= mn

IS square-summable but not absolutely
summable
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Basic Sequences

1 n=0

e Unit sample sequence - oln]| =+
ple seq [n] 0. n=0

Vo Vo Vo Vo Vo Vo

pIn] =+

R

1 2 3 4 5 6
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Basic Sequences

Real sinusoidal sequence -

X[n] = Acos(w,n+ ¢)
where A Is the amplitude, ®q Is the angular
frequency, and ¢ is the phase of x[n]

Example -

2&

Ampl itude

1
0
-1
-2
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Basic Sequences
* Exponential sequence -

x[n]= Aa", —o<n<oo
where A and « are real or complex numbers
o 1f we write o =e(®*1®) A=|Ael?
then we can express
x[n] =A%+ 1o — y In]+ jx;[n],
where
Xre[N] =|Ale®" cos(w,n + ¢),

Xim[N] =|Ale®®" sin(wyn + ¢)
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Amplitude

Basic Sequences

e X.[n]and x[n]of a complex exponential
sequence are real sinusoidal sequences with
constant (c,= 0), growing (o, > 0), and
decaying (o, < 0)amplitudes for n >0

Real part Imaginary part
1¢ ‘ 1 ‘ ‘
| P
ol T® L gﬁﬁﬁ% m ®®©@W®®>% ob T@ J} Q;ﬁﬁ?@@ o i o oo
o 4l Ca
-1 ‘ | ‘ 1 ‘ | |
O : Time ?r(l)dex n N K ’ ° Time ?gdex n * “
. 1 - T
. X[n]=exp(—;+ J)n
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Amplitude

Basic Sequences

* Real exponential sequence -
X[n]=Aa", —co<n<ow
where A and a are real numbers

a=12 a= 09
50 ‘ S 20 : : ‘
0
L - ©
40 0) 151 | T
301 IR o
® = 0
o = 10 0 1
20+ g
<
TTW | WWT |
Og/mmmmmﬂmﬂ()@@@@@@@???f(ﬁ 0 TTTTT?????@@@@@ D
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time index n Time index n
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Basic Sequences

 Sinusoidal sequence Acos(w,n+ ¢) and
complex exponential sequence Bexp( jmyn)

are periodic sequences of period N if ®yN = 27r
where N and r are positive integers

» Smallest value of N satisfying o, N = 2xr
Is the fundamental period of the sequence

e To verify the above fact, consider
X[n] = cos(w,Nn + ¢)
Xo[n]=cos(w,(n+ N)+ ¢)
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Basic Sequences

 Now Xy[n]=cos(w,(n+ N)+¢)
= C0S(w,N+ ¢)cosmw,N —sin(w,n+ ¢)sinw,N
which will be equal to cos(w,n+ ) = x{[N]
only if
sinmw,N =0 and coswyN =1
e These two conditions are met if and only if

woN =2nr or (%’;:T
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Basic Sequences

* If 2n/w, IS a noninteger rational number, then
the period will be a multiple of 2r/m,

e Otherwise, the sequence Is aperiodic

« Example - x[n]=sin(~/3n+¢) is an aperiodic
sequence
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Basic Sequences

2

Amplitude
=

o
W

S

10 20 30 40
Time index n

-}

e Here w, =0

* Hence period N :Zgrzl forr=0
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Basic Sequences

WTT W _TTWTT W _Tﬂ)
3 ﬁmw | %@& |

e Here o, =0.1n

e Hence N =E:20 forr=1

0.1z

76



Basic Sequences

* Property 1 - Consider X[n]=exp(Jjon) and
y[n] =exp(Jjm,n) with 0<w; <7 and

21K < 0, < 2n(K +1) where k is any positive
Integer

o If w,=0wm;+ 27k, then x[n] =y[n]

e Thus, x[n] and y[n] are indistinguishable
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Basic Sequences

* Property 2 - The frequency of oscillation of

Acos(m,n) increases as ®q increases from 0

to «, and then decreases as ®, increases from
T to2m

* Thus, frequencies in the neighborhood of

» =0 are called low frequencies, whereas,
frequencies in the neighborhood of = are
called high frequencies
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e Because of Property 1, a frec

79

Basic Sequences

the neighborhood of ® = 2n

uency @, In
K IS

Indistinguishable from a freo

uency o, —2nk

In the neighborhood of ® =0
and a frequency o, in the neighborhood of

®=m(2k+1) Is Indistinguis

hable from a

frequency w, —m(2k+1) In the

neighborhood of ® = =&
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Basic Sequences

Frequencies in the neighborhood of ® = 2x k
are usually called low frequencies

Frequencies in the neighborhood of
® = 1 (2k+1) are usually called high
frequencies

Vq[n] =cos(0.1xn) = cos(1.97tn) is a low-
frequency signal

Vo[N] = c0s(0.8mn) =cos(1.2rn) is a high-
frequency signal
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Basic Sequences

e An arbitrary sequence can be represented In
the time-domain as a weighted sum of some
basic sequence and its delayed (advanced)
Versions

@ 1.5

Tns l : T )
X[n]=0.50[n+2]+1.56[n—-1]-o[n—2]
+0[n—-4]+0.756[n —6]
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The Sampling Process

o Often, a discrete-time sequence x[n] Is
developed by uniformly sampling a
continuous-time signal x,(t) as indicated

below
Xqf 5TJ\

mm Al

ST 3T -T 0T

fBTJ

e The relation between the two signals Is
x[n]=x,(t)._ . =x,(nT),n=...,-2,-1,0,1,2,...
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The Sampling Process

Time variable t of x, (t)is related to the time
variable n of x[n] only at discrete-time
Instants t. given by

B . n _27mn
tn_nT_FT_QT

with k. =1/T denoting the sampling
frequency and

Q; =2nF; denoting the sampling angular
frequency
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The Sampling Process

e Consider the continuous-time signal
X(t) = Acos(2nf,t + ¢) = Acos(Q.t + ¢)

* The corresponding discrete-time signal IS

X[n]= Acos(Q,nT +¢) = Acos(zgQO N+ o)
T

= Acos(w,N + ¢)

where ®, =21Q,/Q; = QT

IS the normalized digital angular frequency
of x[n]
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The Sampling Process

If the unit of sampling period T iIs In
seconds

The unit of normalized digital angular
frequency w, Is radians/sample

The unit of normalized analog angular
frequency Q, Is radians/second

The unit of analog frequency f, is hertz
(Hz)
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The Sampling Process

e The three continuous-time signals
d1(t) = cos(bmt)
g, (t) =cos(1l4rt)
ds(t) =cos(26nt)

of frequencies 3 Hz, 7 Hz, and 13 Hz, are
sampled at a sampling rate of 10 Hz, i.e.
with T = 0.1 sec. generating the three

sequences
g;[n]=cos(0.6mn)  g,[n]=cos(l.4xn)

ds3[n] = cos(2.6mtn)
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The Sampling Process

 Plots of these sequences (shown with circles)
and their parent time functions are shown
below:

1€

Amplitude

* Note that each sequence has exactly the same
.- Sample value for any given n
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The Sampling Process

 This fact can also be verified by observing that
g,[n]=cos(1.4xn) = cos((2r—0.6m)n)=cos(0.67n)

g3[n] = cos(2.6mn) = cos((2x + 0.6)n) = cos(0.67w n)

« As aresult, all three sequences are identical
and 1t 1s difficult to associate a unique

continuous-time function with each of these
sequences
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The Sampling Process

he above phenomenon of a continuous-
time signal of higher frequency acquiring
the identity of a sinusoidal sequence of

lower frequency after sampling is called
aliasing
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The Sampling Process

e Since there are an infinite number of

90

continuous-time signals that can lead to the
same sequence when sampled periodically,
additional conditions need to imposed so
that the sequence {x[n]} = {Xx,(nT)} can
uniquely represent the parent continuous-
time signal X, (t)

In this case, x,(t) can be fully recovered
from {x[n]}
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The Sampling Process

e Example - Determine the discrete-time
signal v[n] obtained by uniformly sampling
at a sampling rate of 200 Hz the continuous-
time signal
V, (t) = 6c0os(60mt) + 3sin(3007t) + 2cos(340xt)

+ 4cos(500xt) +10sin(660mt)

* Note: v,(t) Is composed of 5 sinusoidal
signals of frequencies 30 Hz, 150 Hz, 170
Hz, 250 Hz and 330 Hz
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The Sampling Process

e The sampling period is T = zioo =0.005 sec

* The generated discrete-time signal v[n] is
thus given by
v[n] = 6¢c0s(0.3xn) + 3sin(1.5ztn) + 2cos(1.7xn)
+ 4c0s(2.5mtn) +10sin(3.37tn)
= 6.c0s(0.37n) + 3sin((2r — 0.57)n) + 2 cos((2n — 0.37)n)
+ 4COS((27I + 0.57) n) +10 Sin((47t —0.7m) n)
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The Sampling Process

= 6¢05(0.3tn) — 3sin(0.5mtn) + 2co0s(0.3wtn) + 4 cos(0.5wtn)
—10sin(0.77xtn)

= 8¢0s(0.37tn) + 5¢c0s(0.5tn+ 0.6435) —10sin(0.77n)

* Note: v[n] Is composed of 3 discrete-time
sinusoidal signals of normalized angular
frequencies: 0.3xw, 0.5m, and 0.7
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The Sampling Process

* Note: An identical discrete-time signal Is

94

also generated by uniformly sampling at a
200-Hz sampling rate the following
continuous-time signals:

Wy (t) = 8cos(60xt) +5cos(100nt + 0.6435) —10sin(140mt)

g4 (t) = 2cos(60nt) + 4 cos(100xt) +10sin(260mt)
+ 6 cos(460xt) + 3sin(7007t)
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The Sampling Process

21,
7

e Recall o, =

* Thus If Q7 >2Q,, then the corresponding
normalized digital angular frequency o, of
the discrete-time signal obtained by
sampling the parent continuous-time
sinusoidal signal will be inthe range —t<w<

. ‘ No aliasing
95

Copyright © 2005, S. K. Mitra



The Sampling Process

* On the other hand, If Q7 <2Q,, the
normalized digital angular frequency will
foldover into a lower digital frequency
0y =(21Q, / Q7 ),, intherange —t<w< =
because of aliasing

e Hence, to prevent aliasing, the sampling
frequency Qr should be greater than 2

times the frequency €, of the sinusoidal
signal being sampled
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The Sampling Process

* Generalization: Consider an arbitrary
continuous-time signal X, (t) composed of a
welighted sum of a number of sinusoidal
signals

e X,(t) can be represented uniquely by its
sampled version {x[n]} if the sampling
frequency Qg Is chosen to be greater than 2
times the highest frequency contained in

Xa (1)
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The Sampling Process

e The condition to be satisfied by the
sampling frequency to prevent aliasing Is
called the sampling theorem

» A formal proof of this theorem will be
presented later

98 Copyright © 2005, S. K. Mitra



	Discrete-Time Signals:Time-Domain Representation
	Discrete-Time Signals:Time-Domain Representation
	Discrete-Time Signals:Time-Domain Representation
	Discrete-Time Signals:Time-Domain Representation
	Discrete-Time Signals:Time-Domain Representation
	Discrete-Time Signals:Time-Domain Representation
	Discrete-Time Signals:Time-Domain Representation
	Discrete-Time Signals:Time-Domain Representation
	Discrete-Time Signals:Time-Domain Representation
	Discrete-Time Signals:Time-Domain Representation
	Discrete-Time Signals:Time-Domain Representation
	Discrete-Time Signals:Time-Domain Representation
	Discrete-Time Signals:Time-Domain Representation
	Discrete-Time Signals:Time-Domain Representation
	Discrete-Time Signals:Time-Domain Representation
	Discrete-Time Signals:Time-Domain Representation
	Discrete-Time Signals:Time-Domain Representation
	Discrete-Time Signals:Time-Domain Representation
	Discrete-Time Signals:Time-Domain Representation
	Discrete-Time Signals:Time-Domain Representation
	Discrete-Time Signals:Time-Domain Representation
	Operations on Sequences
	Operations on Sequences
	Basic Operations
	Basic Operations
	Basic Operations
	Basic Operations
	Basic Operations
	Basic Operations
	Basic Operations
	Basic Operations
	Basic Operations
	Basic Operations
	Basic Operations
	Basic Operations
	Basic Operations
	Combinations of Basic Operations
	Sampling Rate Alteration
	Sampling Rate Alteration
	Sampling Rate Alteration
	Sampling Rate Alteration
	Sampling Rate Alteration
	Classification of Sequences Based on Symmetry
	Classification of Sequences Based on Symmetry
	Classification of Sequences Based on Symmetry
	Classification of Sequences Based on Symmetry
	Classification of Sequences Based on Symmetry
	Classification of Sequences Based on Symmetry
	Classification of Sequences Based on Symmetry
	Classification of Sequences Based on Symmetry
	Classification of Sequences Based on Symmetry
	Classification of Sequences Based on Symmetry
	Classification of Sequences Based on Symmetry
	Classification of Sequences Based on Symmetry
	Classification of Sequences Based on Symmetry
	Classification of Sequences Based on Symmetry
	Classification of Sequences Based on Periodicity
	Classification of Sequences Based on Periodicity
	Classification of Sequences:Energy and Power Signals
	Classification of Sequences:Energy and Power Signals
	Classification of Sequences:Energy and Power Signals
	Classification of Sequences:Energy and Power Signals
	Classification of Sequences:Energy and Power Signals
	Other Types of Classifications
	Other Types of Classifications
	Other Types of Classifications
	Basic Sequences
	Basic Sequences
	Basic Sequences
	Basic Sequences
	Basic Sequences
	Basic Sequences
	Basic Sequences
	Basic Sequences
	Basic Sequences
	Basic Sequences
	Basic Sequences
	Basic Sequences
	Basic Sequences
	Basic Sequences
	Basic Sequences
	The Sampling Process
	The Sampling Process
	The Sampling Process
	The Sampling Process
	The Sampling Process
	The Sampling Process
	The Sampling Process
	The Sampling Process
	The Sampling Process
	The Sampling Process
	The Sampling Process
	The Sampling Process
	The Sampling Process
	The Sampling Process
	The Sampling Process
	The Sampling Process
	The Sampling Process

